Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1304-1320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies $\omega_e$ and $\omega_m$ and two propagation constants $\widehat\gamma_e$ and $\widehat\gamma_m$. The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues $(\widehat\gamma_e, \widehat\gamma_m)$ in proven and intervals of their localization are determined.
@article{ZVMMF_2017_57_8_a6,
     author = {D. V. Valovik and E. Yu. Smol'kin},
     title = {Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1304--1320},
     year = {2017},
     volume = {57},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a6/}
}
TY  - JOUR
AU  - D. V. Valovik
AU  - E. Yu. Smol'kin
TI  - Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1304
EP  - 1320
VL  - 57
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a6/
LA  - ru
ID  - ZVMMF_2017_57_8_a6
ER  - 
%0 Journal Article
%A D. V. Valovik
%A E. Yu. Smol'kin
%T Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1304-1320
%V 57
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a6/
%G ru
%F ZVMMF_2017_57_8_a6
D. V. Valovik; E. Yu. Smol'kin. Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1304-1320. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a6/

[1] Valovik D. V., “On the problem of nonlinear coupled electromagnetic TE-TM wave propagation”, J. math. phys., 54:4 (2013), 042902(14) | DOI | MR | Zbl

[2] Valovik D. V., Smirnov Yu. G., “K zadache o rasprostranenii nelineinykh svyazannykh elektromagnitnykh TE-TM-voln v sloe”, Zh. vychisl. matem. i matem. fiz., 54:3 (2014), 504–518 | DOI | Zbl

[3] Smirnov Yu. G., Valovik D. V., “Problem of nonlinear coupled electromagnetic TE-TE wave propagation”, J. math. phys., 54:8 (2013), 083502(13) | DOI | MR | Zbl

[4] Smirnov Yu. G., Valovik D. V., “Coupled electromagnetic TE-TM wave propagation in a cylindrical waveguide with Kerr nonlinearity”, J. math. phys., 54:4 (2013), 043506(22) | DOI | MR | Zbl

[5] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Structure of three-component vector fields in self-focusing waveguides”, Soviet Physics JETP, 36:2 (1973), 282–285

[6] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Vector structure of electromagnetic fieldin self-focused waveguides”, Sov. Phys. Usp., 15:4 (1972), 524–525 | DOI

[7] Boardman A. D., Egan P., Lederer F., Langbein U., Mihalache D., Third-order nonlinear electromagnetic TE and TM guided waves, Elsevier sci. Publ., 1991

[8] Smirnov Yu. G., Valovik D. V., “Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity”, Physical Review A, 91:1 (2015), 013840-1—013840-6 | DOI | MR

[9] Valovik D. V., “Nonlinear coupled electromagnetic wave propagation: saturable nonlinearities”, Wave Motion, 60 (2016), 166–180 | DOI | MR

[10] Veselov G. I., Raevskii S. V., Sloistye metallo-dielektricheskie volnovody, Radio i svyaz, M., 1988

[11] Zilbergleit A. S., Kopilevich Yu. I., Spektralnaya teoriya regulyarnykh volnovodov, FTI, L., 1983

[12] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Cylindrical nonlinear waveguides”, Soviet Physics JETP, 35:1 (1972), 44–47

[13] Stretton Dzh. A., Teoriya elektromagnetizma, GITTL, M.–L., 1948

[14] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v 10 t., v. VIII, Elektrodinamika sploshnykh sred, Nauka, M., 1982

[15] Shen I. R., Printsipy nelineinoi optiki, Nauka, M., 1989

[16] Akhmediev N. N., Ankevich A., Solitony, nelineinye impulsy i puchki, Fizmatlit, M., 2003

[17] Vainshtein L. A., Elektromagnitnye volny, Radio i svyaz, M., 1988

[18] Vzyatyshev V. F., Dielektricheskie volnovody, Sovetskoe radio, M., 1970

[19] Goncharenko A. M., Karpenko V. A., Osnovy teorii opticheskikh volnovodov, Nauka i tekhnika, Minsk, 1983

[20] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[21] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1993

[22] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo Moskovskogo universiteta, M., 1984

[23] Smirnov Yu. G., “Zadachi sopryazheniya na sobstvennye znacheniya, opisyvayuschie rasprostranenie TE-i TM-voln v dvukhsloinykh neodnorodnykh anizotropnykh tsilindricheskikh i ploskikh volnovodakh”, Zh. vychisl. matem. i matem. fiz., 55:3 (2015), 460–468 | DOI | Zbl