Solving some problems for systems of linear ordinary differential equations with redundant conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1285-1293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical methods are proposed for solving some problems for a system of linear ordinary differential equations in which the basic conditions (which are generally nonlocal ones specified by a Stieltjes integral) are supplemented with redundant (possibly nonlocal) conditions. The system of equations is considered on a finite or infinite interval. The problem of solving the inhomogeneous system of equations and a nonlinear eigenvalue problem are considered. Additionally, the special case of a self-adjoint eigenvalue problem for a Hamiltonian system is addressed. In the general case, these problems have no solutions. A principle for constructing an auxiliary system that replaces the original one and is normally consistent with all specified conditions is proposed. For each problem, a numerical method for solving the corresponding auxiliary problem is described. The method is numerically stable if so is the constructed auxiliary problem.
@article{ZVMMF_2017_57_8_a4,
     author = {A. A. Abramov and L. F. Yukhno},
     title = {Solving some problems for systems of linear ordinary differential equations with redundant conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1285--1293},
     year = {2017},
     volume = {57},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a4/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - L. F. Yukhno
TI  - Solving some problems for systems of linear ordinary differential equations with redundant conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1285
EP  - 1293
VL  - 57
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a4/
LA  - ru
ID  - ZVMMF_2017_57_8_a4
ER  - 
%0 Journal Article
%A A. A. Abramov
%A L. F. Yukhno
%T Solving some problems for systems of linear ordinary differential equations with redundant conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1285-1293
%V 57
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a4/
%G ru
%F ZVMMF_2017_57_8_a4
A. A. Abramov; L. F. Yukhno. Solving some problems for systems of linear ordinary differential equations with redundant conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1285-1293. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a4/

[1] Abramov A. A., Yukhno L. F., “Reshenie sistemy lineinykh obyknovennykh differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 585–590 | DOI | Zbl

[2] Abramov A. A., Yukhno L. F., “Reshenie singulyarnoi nelokalnoi zadachi dlya lineinoi sistemy obyknovennykh differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 55:3 (2015), 385–392 | DOI | Zbl

[3] Abramov A. A., Yukhno L. F., “Metod resheniya nelineinoi spektralnoi zadachi dlya sistemy obyknovennykh differentsialnykh uravnenii s izbytochnymi usloviyami”, Differents. ur-niya, 51:7 (2015), 866–875 | DOI | Zbl

[4] Abramov A. A., Yukhno L. F., “Nelineinaya singulyarnaya spektralnaya zadacha dlya lineinoi sistemy obyknovennykh differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 56:7 (2016), 1294–1298 | DOI | Zbl

[5] Abramov A. A., Yukhno L. F., “Nelineinaya spektralnaya zadacha dlya gamiltonovoi sistemy differentsialnykh uravnenii s izbytochnymi usloviyami”, Differents. ur-niya, 50:7 (2014), 877–883 | DOI | Zbl

[6] Abramov A. A., “Modifikatsiya odnogo metoda resheniya nelineinoi spektralnoi zadachi dlya gamiltonovoi sistemy obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 39–43 | Zbl

[7] Abramov A. A., Yukhno L. F., “Nelineinaya singulyarnaya spektralnaya zadacha dlya gamiltonovoi sistemy differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 599–609 | DOI | Zbl

[8] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 342–345

[9] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sovjet. J. Numer. Analys. Math. Modelling, 1:4 (1986), 245–265 | MR | Zbl