Finding sets of solutions to systems of nonlinear inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1248-1254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of approximating the set of all solutions to a system of nonlinear inequalities is studied. A method based on the concept of nonuniform coverings is proposed. It allows one to obtain an interior and exterior approximation of this set with a prescribed accuracy. The efficiency of the method is demonstrated by determining the workspace of a parallel robot.
@article{ZVMMF_2017_57_8_a1,
     author = {Yu. G. Evtushenko and M. A. Posypkin and L. A. Rybak and A. V. Turkin},
     title = {Finding sets of solutions to systems of nonlinear inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1248--1254},
     year = {2017},
     volume = {57},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a1/}
}
TY  - JOUR
AU  - Yu. G. Evtushenko
AU  - M. A. Posypkin
AU  - L. A. Rybak
AU  - A. V. Turkin
TI  - Finding sets of solutions to systems of nonlinear inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1248
EP  - 1254
VL  - 57
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a1/
LA  - ru
ID  - ZVMMF_2017_57_8_a1
ER  - 
%0 Journal Article
%A Yu. G. Evtushenko
%A M. A. Posypkin
%A L. A. Rybak
%A A. V. Turkin
%T Finding sets of solutions to systems of nonlinear inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1248-1254
%V 57
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a1/
%G ru
%F ZVMMF_2017_57_8_a1
Yu. G. Evtushenko; M. A. Posypkin; L. A. Rybak; A. V. Turkin. Finding sets of solutions to systems of nonlinear inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 8, pp. 1248-1254. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_8_a1/

[1] Lotov A. V., Pospelov A. I., “Modifitsirovannyi metod utochneniya otsenok dlya poliedralnoi approksimatsii vypuklykh mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 990–998 | Zbl

[2] Kamenev G. K., “Metod poliedralnoi approksimatsii shara s optimalnym poryadkom rosta moschnosti grannoi struktury”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 1235–1248 | DOI | Zbl

[3] Kamenev G. K., “Effektivnost metoda utochneniya otsenok pri approksimatsii mnogomernykh sharov mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 56:5 (2016), 756–767 | DOI | Zbl

[4] Bushenkov V. A., Lotov A. V., “Metody i algoritmy analiza lineinykh sistem na osnove postroeniya obobschennykh mnozhestv dostizhimosti”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1130–1141 | Zbl

[5] Voronov E. M., Karpenko A. P., Kozlova O. G., Fedin V. A., “Chislennye metody postroeniya oblasti dostizhimosti dinamicheskoi sistemy”, Vestn. MGTU im. N. E. Baumana. Ser. Priborostroenie, 2010, no. 2, 3–20

[6] Evtushenko Yu. G., Posypkin M. A., “Determinirovannyi globalnyi metod approksimatsii effektivnoi obolochki mnozhestva”, Dokl. AN, 459:5 (2014), 550–553 | DOI | Zbl

[7] Garanzha V. A., Kudryavtseva L. N., “Postroenie trekhmernykh setok Delone po slabostrukturirovannym i protivorechivym dannym”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 499–520 | Zbl

[8] Evtushenko Yu. G., “Chislennyi metod poiska globalnogo ekstremuma funktsii (perebor na neravnomernoi setke)”, Zh. vychisl. matem. i matem. fiz., 11:6 (1971), 1390–1403 | Zbl

[9] Evans J. P., Gould F. J., “Stability in nonlinear programming”, Operat. Research., 18:1 (1970), 107–118 | DOI | MR | Zbl

[10] Rybak L. A., Erzhukov V. V., Chichvarin A. V., Effektivnye metody resheniya zadach kinematiki i dinamiki robota-stanka parallelnoi struktury, Fizmatlit, M., 2011, 146 pp.

[11] Rybak L. A., Sinev A. B., “Sintez mnogosvyaznogo tsifrovogo upravleniya aktivnoi sistemoi vibroizolyatsii dlya dvumernoi ploskoi zadachi”, Probl. mashinostr. i nadezhnosti mashin, 1997, no. 3, 10–17

[12] Huerta-Cepas J., Serra F., Bork P., “ETE 3: Reconstruction, analysis and visualization of phylogenomic data”, Molecular Biology and Evolution, 2016 | DOI