Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1184-1197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for a quasi-linear equation determining the velocity profile of a flow of a polymer fluid in a pipe formed by two coaxial cylinders is considered. On the basis of methods of approximation without saturation, a computational algorithm of increased accuracy is developed, making it possible to solve the problem in a wide range of parameters, including record-low values of $r_0$, the radius of the inner cylinder.
@article{ZVMMF_2017_57_7_a9,
     author = {A. M. Blokhin and E. A. Kruglova and B. V. Semisalov},
     title = {Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1184--1197},
     year = {2017},
     volume = {57},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a9/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - E. A. Kruglova
AU  - B. V. Semisalov
TI  - Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1184
EP  - 1197
VL  - 57
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a9/
LA  - ru
ID  - ZVMMF_2017_57_7_a9
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A E. A. Kruglova
%A B. V. Semisalov
%T Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1184-1197
%V 57
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a9/
%G ru
%F ZVMMF_2017_57_7_a9
A. M. Blokhin; E. A. Kruglova; B. V. Semisalov. Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1184-1197. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a9/

[1] Graessley W. W., Polymeric Liquids Networks: Dynamics and Rheology, Garland Science, London, 2008

[2] Kontopoulou M., Applied polymer rheology: polymeric fluids with industrial applications, Wiley, Hoboken, 2012

[3] Ferry J. D., Viscoelastic Properties of Polymers, 3rd ed., Wiley, London, 1980

[4] Grosberg A. Yu., Khokhlov A. R., Statistical Physics of macromolecules, Springer, Berlin, 1994 | MR

[5] Doi M., Edwards S. F., The theory of polymer dynamics, Oxford Univ. Press, Oxford, 1986

[6] Astarita G., Marucci G., Principles of non-newtonian fluid mechanics, McGraw-Hill, New York, 1974 | MR

[7] Pyshnograi G., Joda H., Pyshnograi I., “The mesoscopic constitutive equations for polymeric fluids and some examples of viscometric flows”, World J. Mechanics, 2:1 (2012), 19–27 | DOI

[8] Leonov A. I., A Brief introduction to the rheology of polymeric fluids, Coxmoor Publ. Company, Oxford, 2008

[9] Sun H., Wang S.-Q., “Shear and extensional rheology of entangled polymer melts: Similarities and differences”, Sci. China Chemistry, 55:5 (2012), 779–786 | DOI

[10] Margone G., Orlandini E., Stella A. L., Zonta F., What is the length of a knot in a polymer?, J. Phys. A: Math. Gen., 38 (2005), L15–L21 | DOI | MR

[11] Kremer K., Sukumaran S. K., Everaers R., Grest G. S., “Entangled polymer systems”, Comput. Phys. Commun., 169:1–3 (2005), 75–81 | DOI

[12] Pokrovskii V. N., The Mesoscopic theory of polymer dynamics, 2nd ed., Springer, Berlin, 2010 | DOI

[13] Altukhov Yu. A., Gusev A. S., Pyshnograi G. V., Vvedenie v mezoskopicheskuyu teoriyu tekuchesti polimernykh sistem, Izd-vo AltGPA, Barnaul, 2012

[14] Makarova M. A., Gusev A. S., Pyshnograi G. V., Rybakov A. A., “Nelineinaya teoriya vyazkouprugosti lineinykh polimerov”, EFTZh, 2 (2007), 1–54

[15] Blokhin A. M., Semisalov B. V., Shevchenko A. S., “Statsionarnye resheniya uravnenii, opisyvayuschikh neizotermicheskie techeniya neszhimaemoi vyazkouprugoi polimernoi zhidkosti”, Matem. modelirovanie, 28:10 (2016), 3–22

[16] Blokhin A. M., Semisalov B. V., “Statsionarnoe techenie neszhimaemoi vyazkouprugoi polimernoi zhidkosti v kanale s ellipticheskim secheniem”, Sib. zhurnal industr. matem., XVII:4(60) (2014), 38–47 | Zbl

[17] Blokhin A. M., Rudometova A. S., “Statsionarnoe reshenie uravnenii, opisyvayuschikh neizotermicheskuyu elektrokonvektsiyu slaboprovodyaschei neszhimaemoi polimernoi zhidkosti”, Sib. zhurnal industr. matem., XVIII:1(61) (2015), 3–13

[18] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Matem. modelirovanie, 21:4 (2009), 15–34 | Zbl

[19] Semisalov B. V., “Nelokalnyi algoritm poiska reshenii uravneniya Puassona i ego prilozheniya”, Zh. vychisl. matem. i matem. fiz., 54:7 (2014), 1110–1135 | DOI | Zbl

[20] Babenko K. I., Osnovy chislennogo analiza, Fizmatlit, M., 1986, 714 pp.

[21] Semisalov B. V., “Bystryi nelokalnyi algoritm resheniya kraevykh zadach Neimana–Dirikhle s kontrolem pogreshnosti”, Vychisl. metody i programmirovanie, 17:4 (2016), 500–522