Generalization of the optical theorem to multipole sources in the scattering theory of electromagnetic waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1176-1183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Energy relations are used to generalize the Optical Theorem to the case of a local body excited by a multipole source, including in the presence of a half-space. It is shown that the extinction cross section can be represented in an explicit analytical form. This circumstance considerably facilitates the computation of the fluorescence quantum yield or the efficiency of an optical antenna.
@article{ZVMMF_2017_57_7_a8,
     author = {Yu. A. Eremin and A. G. Sveshnikov},
     title = {Generalization of the optical theorem to multipole sources in the scattering theory of electromagnetic waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1176--1183},
     year = {2017},
     volume = {57},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a8/}
}
TY  - JOUR
AU  - Yu. A. Eremin
AU  - A. G. Sveshnikov
TI  - Generalization of the optical theorem to multipole sources in the scattering theory of electromagnetic waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1176
EP  - 1183
VL  - 57
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a8/
LA  - ru
ID  - ZVMMF_2017_57_7_a8
ER  - 
%0 Journal Article
%A Yu. A. Eremin
%A A. G. Sveshnikov
%T Generalization of the optical theorem to multipole sources in the scattering theory of electromagnetic waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1176-1183
%V 57
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a8/
%G ru
%F ZVMMF_2017_57_7_a8
Yu. A. Eremin; A. G. Sveshnikov. Generalization of the optical theorem to multipole sources in the scattering theory of electromagnetic waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1176-1183. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a8/

[1] Khenl Kh., Maue A., Vestpfal K., Teoriya difraktsii, Mir, M., 1964

[2] Mishchenko M. I., “The electromagnetic optical theorem revisited”, J. Quantitat. Spectr. Radiat. Trans., 101 (2006), 404–410 | DOI

[3] Farafonov V. G., Ilin V. B., Vinokurov A. A., “Rasseyanie sveta nesfericheskimi chastitsami v blizhnei i dalnei zonakh: primenimost metodov so sfericheskim bazisom”, Optika i spektroskopiya, 109 (2010), 476–487

[4] Newton R. G., Scattering theory of waves and particles, Springer, New York, 1982, 748 pp. | MR | Zbl

[5] Ström S., “The scattered field”, Field representation and introduction to scattering, eds. V. V. Varadan, A. Lakhtakia, V. K. Varadan, Elsevier Sci. Publisher, 1991, 143–149 | MR

[6] Berg M. J., Sorensen C. M., Chakrabarti A., “Extinction and the optical theorem. Part I. Single particles”, J. Opt. Soc. Am. A, 25:7 (2008), 1504–1513 | DOI

[7] Landau L. D., Lifshits E. M., Kvantovaya mekhanika (nerelyativistskaya teoriya), Izdanie 4-e, Nauka, M., 1989

[8] Farafonov V. G., Ilin V. B., Rasseyanie sveta neodnorodnymi nesfericheskimi chastitsami, VVM, SPbGU, 2009

[9] Mackowski D. W., “Calculation of total cross sections of multiple-sphere clusters”, J. Opt. Soc. Am. A, 11 (1994), 2851–2861 | DOI

[10] Carney P. S., Schotland J. C., Wolf E., “Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields”, Phys. Rev. E, 70:3 (2004), 036611 | DOI

[11] Eremin Yu. A., “Obobschenie opticheskoi teoremy na osnove integro-funktsionalnykh sootnoshenii”, Differents. ur-niya, 43:9 (2007), 1168–1172 | Zbl

[12] Small A., Fung J., Manoharan V. N., “Generalization of the optical theorem for light scattering from a particle at a planar interface”, J. Opt. Soc. Am. A, 30:12 (2013), 2519–2525 | DOI

[13] Athanasiadis C., Martin P. A., Spyropoulos Stratis A. I. G., “Scattering relations for point sources. Acoustic and electromagnetic waves”, J. Math. Phys., 43:11 (2002), 5683–5697 | DOI | MR | Zbl

[14] Venkatapathi M., “Emitter near an arbitrary body: Purcell effect, optical theorem and the Wheeler-Feynman absorber”, J. Quantitat. Spectr. Radiat. Transfer., 113 (2012), 1705–1711 | DOI

[15] Eremin Yu. A., Sveshnikov A. G., “Opticheskaya teorema dlya lokalnykh istochnikov v teorii difraktsii”, Vestn. Mosk. un-ta. Ser. 3. Fizika, Astronomiya, 2015, no. 4, 43–46

[16] Eremin Yu. A., Sveshnikov A. G., “Opticheskaya teorema dlya multipolnykh istochnikov v teorii difraktsii voln”, Akusticheskii zhurnal, 62:3 (2016), 271–276 | DOI

[17] Liaw J.-W., Chen C.-S., Kuo M.-K., “Comparison of Au and Ag nanoshells' metal-enhanced fluorescence”, J. Quantitat. Spectr. Radiat. Transfer., 146 (2014), 321 | DOI

[18] Novotny L., Van de Hulst N., “Antennas for light (Review)”, Nature Photon, 5:1 (2011), 83 | DOI

[19] Grishina N. V., Eremin Yu. A., Sveshnikov A. G., “Metod diskretnykh istochnikov dlya analiza usileniya flyuorestsentsii v prisutstvii plazmonnykh struktur”, Zh. vychisl. matem. i matem. fiz., 56:1 (2016), 131–139

[20] Zia R., “Accessing forbidden transitions: Magnetic dipoles and electric quadrupoles for nano-optics”, Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and Internat. Quantum Electronics Conference, 2013, 1

[21] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[22] Devaney A. J., Wolf E., “Multipole expansions and plane wave representations of the electromagnetic field”, J. Math. Phys., 15 (1974), 234–244 | DOI | MR

[23] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979

[24] Korn G., Korn T., Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov), Nauka, M., 1973

[25] Dmitriev V. I., Zakharov E. V., Metod integralnykh uravnenii v vychislitelnoi elektrodinamike, MAKS Press, M., 2008

[26] Grishina N. V., Eremin Yu. A., Sveshnikov A. G., “Analiz effekta dvoinogo plazmonnogo rezonansa metodom diskretnykh istochnikov”, Zh. vychisl. matem. i matem. fiz., 54:8 (2014), 54–69