@article{ZVMMF_2017_57_7_a4,
author = {L. M. Skvortsov},
title = {How to avoid accuracy and order reduction in {Runge{\textendash}Kutta} methods as applied to stiff problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1126--1141},
year = {2017},
volume = {57},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a4/}
}
TY - JOUR AU - L. M. Skvortsov TI - How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1126 EP - 1141 VL - 57 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a4/ LA - ru ID - ZVMMF_2017_57_7_a4 ER -
%0 Journal Article %A L. M. Skvortsov %T How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1126-1141 %V 57 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a4/ %G ru %F ZVMMF_2017_57_7_a4
L. M. Skvortsov. How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1126-1141. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a4/
[1] Alexander R., “Diagonally implicit Runge-Kutta methods for stiff O. D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl
[2] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[3] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge-Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17
[4] Kværmø A., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR | Zbl
[5] Skvortsov L. M., “Diagonalno neyavnye metody Runge-Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222
[6] Rang J., “An analysis of the Prothero-Robinson example for constructing new adaptive ESDIRK methods of order 3 and 4”, Appl. Numer. Math., 94 (2015), 75–87 | DOI | MR | Zbl
[7] Prothero A., Robinson A., “On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations”, Math. Comput., 28:1 (1974), 145–162 | DOI | MR | Zbl
[8] Dekker K., Verver Ya., Ustoichivost metodov Runge-Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988
[9] Sans-Serna J. M., Verwer J. G., Hundsdorfer W. H., “Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations”, Numer. Math., 59 (1986), 405–418 | DOI | MR
[10] Skvortsov L. M., “Tochnost metodov Runge-Kutty pri reshenii zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1374–1384 | Zbl
[11] Skvortsov L. M., “Modelnye uravneniya dlya issledovaniya tochnosti metodov Runge-Kutty”, Matem. modelirovanie, 22:5 (2010), 146–160
[12] Skvortsov L. M., “Yavnye metody Runge-Kutty dlya umerenno zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 2017–2030 | Zbl
[13] Butcher J. C., Chen D. J. L., “A new type of singly implicit Runge-Kutta methods”, Appl. Numer. Math., 34:2–3 (2000), 179–188 | DOI | MR | Zbl
[14] Skvortsov L. M., “Odnokratno neyavnye diagonalno rasshirennye metody Runge-Kutty chetvertogo poryadka”, Zh. vychisl. matem. i matem. fiz., 54:5 (2014), 755–765 | DOI | Zbl
[15] Gantmakher F. R., Teoriya matrits, 4-e izd., Nauka, M., 1988
[16] Skvortsov L. M., “Ekonomichnaya skhema realizatsii neyavnykh metodov Runge-Kutty”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 2008–2018
[17] Skvortsov L. M., “Diagonalno-neyavnye metody Runge-Kutty dlya differentsialno-algebraicheskikh uravnenii indeksov 2 i 3”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1047–1059 | Zbl
[18] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychislitelnye protsessy i sistemy, 8, Nauka, M., 1991, 237–291 | Zbl
[19] Skvortsov L. M., “Yavnye stabilizirovannye metody Runge-Kutty”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1236–1250 | Zbl
[20] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990
[21] Kalitkin N. N., Poshivailo I. P., “Vychisleniya s ispolzovaniem obratnykh skhem Runge-Kutty”, Matem. modelirovanie, 25:10 (2013), 79–96
[22] Cash J. R., Singhal A., “Mono-implicit Runge-Kutta formulae for the numerical integration of stiff differential systems”, IMA J. Numer. Anal., 2 (1982), 211–227 | DOI | MR | Zbl
[23] Burrage K., Chipman F. H., Muir P. H., “Order results for mono-implicit Runge-Kutta methods”, SIAM J. Numer. Anal., 31:3 (1994), 876–891 | DOI | MR | Zbl
[24] Kulikov G. Yu., Shindin S. K., “Adaptive nested implicit Runge-Kutta formulas of Gauss type”, Appl. Numer. Math., 59:3–4 (2009), 707–722 | DOI | MR | Zbl
[25] Kulikov G. Yu., “Vlozhennye simmetrichnye neyavnye gnezdovye metody Runge-Kutty tipov Gaussa i Lobatto dlya resheniya zhestkikh obyknovennykh differentsialnykh uravnenii i gamiltonovykh sistem”, Zh. vychisl. matem. i matem. fiz., 55:6 (2015), 986–1007 | DOI | Zbl
[26] Bogacki P., Shampine L. F., “A 3(2) pair of Runge-Kutta formulas”, Appl. Math. Lett., 2:4 (1989), 321–325 | DOI | MR | Zbl