How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1126-1141

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of stiff problems is frequently accompanied by a phenomenon known as order reduction. The reduction in the actual order can be avoided by applying methods with a fairly high stage order, ideally coinciding with the classical order. However, the stage order sometimes fails to be increased; moreover, this is not possible for explicit and diagonally implicit Runge–Kutta methods. An alternative approach is proposed that yields an effect similar to an increase in the stage order. New implicit and stabilized explicit Runge–Kutta methods are constructed that preserve their order when applied to stiff problems.
@article{ZVMMF_2017_57_7_a4,
     author = {L. M. Skvortsov},
     title = {How to avoid accuracy and order reduction in {Runge{\textendash}Kutta} methods as applied to stiff problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1126--1141},
     publisher = {mathdoc},
     volume = {57},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a4/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1126
EP  - 1141
VL  - 57
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a4/
LA  - ru
ID  - ZVMMF_2017_57_7_a4
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1126-1141
%V 57
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a4/
%G ru
%F ZVMMF_2017_57_7_a4
L. M. Skvortsov. How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1126-1141. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a4/