Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1205-1229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Slow flows of a slightly rarefied gas under high thermal stresses are considered. The correct fluid-dynamic description of this class of flows is based on the Kogan–Galkin–Friedlander equations, containing some non-Navier–Stokes terms in the momentum equation. Appropriate boundary conditions are determined from the asymptotic analysis of the Knudsen layer on the basis of the Boltzmann equation. Boundary conditions up to the second order of the Knudsen number are studied. Some two-dimensional examples are examined for the comparative analysis. The fluid-dynamic results are supported by numerical solution of the Boltzmann equation obtained by the Tcheremissine's projection-interpolation discrete-velocity method extended for nonuniform grids. The competition pattern between the first- and the second-order nonlinear thermal-stress flows has been obtained for the first time.
@article{ZVMMF_2017_57_7_a11,
     author = {O. A. Rogozin},
     title = {Slow nonisothermal flows: {Numerical} and asymptotic analysis of the {Boltzmann} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1205--1229},
     year = {2017},
     volume = {57},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a11/}
}
TY  - JOUR
AU  - O. A. Rogozin
TI  - Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1205
EP  - 1229
VL  - 57
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a11/
LA  - ru
ID  - ZVMMF_2017_57_7_a11
ER  - 
%0 Journal Article
%A O. A. Rogozin
%T Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1205-1229
%V 57
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a11/
%G ru
%F ZVMMF_2017_57_7_a11
O. A. Rogozin. Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1205-1229. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a11/

[1] Galkin B. C., Kogan M. N., Fridlender O. G., “O nekotorykh kineticheskikh effektakh v techeniyakh sploshnoi sredy”, Izv. AN SSSR. MZhG, 5:3 (1970), 13–21 | Zbl

[2] Galkin V. S., Kogan M. N., Fridlender O. G., “O svobodnoi konvektsii v gaze v otsutstvie vneshnikh sil”, Izv. AN SSSR. MZhG, 6:3 (1971), 98–107

[3] Galkin B. C., Fridlender O. G., “Sily, deistvuyuschie na tela v gaze i obuslovlennye barnettovskimi napryazheniyami”, Prikl. matem. i mekhan., 38:2 (1974), 271–283 | Zbl

[4] Galkin B. C., “Vyvod uravnenii medlennykh techenii smesei gazov iz uravneniya Boltsmana”, Uch. zap. TsAGI, 5:4 (1974), 40–47

[5] Kogan M. N., Galkin V. S., Fridlender O. G., “O napryazheniyakh, voznikayuschikh v gazakh vsledstvie neodnorodnosti temperatury i kontsentratsii. Novye tipy svobodnoi konvektsii”, Uspekhi fiz. nauk, 119 (1976), 111–125 | DOI

[6] Galkin V. S., Rusakov S. V., “Uravneniya gazodinamiki medlennykh neodnorodnykh po temperature i kontsentratsiyam techenii smesei mnogoatomnykh gazov”, Prikl. matem. i mekhan., 79:2 (2015), 218–235 | Zbl

[7] Burnett D., “The distribution of velocities in a slightly non-uniform gas”, P. London Math. Soc., 2 (1935), 385–430 | DOI | MR

[8] Chepmen S., Kauling T., Matematicheskaya teoriya neodnorodnykh gazov, Izd-vo inostr. lit., M., 1960

[9] Sone Y., Aoki K., Takata S., Sugimoto H., Bobylev A. V., “Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation”, Phys. Fluids, 8 (1996), 628–638 | DOI | MR | Zbl

[10] Sone Y., Kinetic theory and fluid dynamics, Birkhauser, Boston, 2002 | MR | Zbl

[11] Sone Y., Molecular gas dynamics: theory, techniques, and applications, Birkhauser, Boston, 2007 | MR | Zbl

[12] Zhbakova A. V., Fridlender O. G., “Teploperedacha v medlennykh techeniyakh gaza”, Uch. zap. TsAGI, 9:5 (1978), 125–128

[13] Alexandrov V., Boris A., Friedlander O., Kogan M., Nikolsky Yu., Perminov V., “Thermal stress effect and its experimental detection”, Rarefied Gas Dynamics, Chap. Rarefied Flow Studies, ed. C. Shen, Peking University Press, Beijing, China, 1997, 79–84

[14] Alexandrov V. Yu., Friedlander O. G., Nikolsky Yu. V., “Numerical and experimental investigations of thermal stress effect on nonlinear thermomolecular pressure difference”, Rarefied Gas Dynamics, Chap. Rarefied Flow Studies, eds. A.D. Ketsdever, E.P. Muntz, AIP, New York, 2003, 250–257 | DOI

[15] Aleksandrov V. Yu., “Chislennoe issledovanie vliyaniya temperaturnykh napryazhenii na nelineinyi effekt termomolekulyarnoi raznosti davlenii”, Izv. RAN. MZhG., 37:6 (2002), 148–161 | Zbl

[16] Laneryd C.-J. T., Aoki K., Degond P., Mieussens L., “Thermal creep of a slightly rarefied gas through a channel with curved boundary”, Rarefied Gas Dynamics, eds. M. S. Ivanov, A. K. Rebrov, Siberian Branch of the Russian Academy of Sci, Novosibirsk, 2007, 1111–1116

[17] Aleksandrov V. Yu., Fridlender O. G., “Medlennye techeniya gaza i effekt otritsatelnogo soprotivleniya silno nagretoi sfericheskoi chastitsy”, Izv. RAN. MZhG, 43:3 (2008), 168–177 | Zbl

[18] Aleksandrov V. Yu., “Soprotivlenie silno nagretoi sfery pri malykh chislakh Reinolda”, Izv. RAN. MZhG, 46:5 (2011), 142–156

[19] Larina I. N., Rykov V. A., “Kineticheskaya model uravneniya Voltsmana, soderzhaschaya predelnye rezhimy techenii gaza pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1294–1308

[20] Aleksandrov V. Yu., Erofeev A. I., Kogan M. N., Fridlender O. G., “Temperaturnoe silovoe vzaimodeistvie sfericheskikh chastits”, Izv. RAN. MZhG, 43:2 (2008), 183–188 | Zbl

[21] Laneryd C.-J. T., Aoki K., Takata S., “Slow flows of a vapor-gas mixture with large density and temperature variations in the near-continuum regime”, Phys. Fluids, 19 (2007), 107104 | DOI | Zbl

[22] Rjasanow S., Wagner W., Stochastic numeries for the Boltzmann Equation, Springer, Berlin, 2005 | MR

[23] Radtke G. A., Perand J.-P. M., Hadjiconstantinou N. G., “On efficient simulations of multiscale kinetic transport”, Philos Trans. A Math. Phys. Engng. Scie., 371:1982 (2013), 20120182 | DOI | MR | Zbl

[24] Dimarco G., Pareschi L., “Numerical methods for kinetic equations”, Acta Numer., 23 (2014), 369–520 | DOI | MR

[25] Mieussens L., “A survey of deterministic solvers for rarefied flows”, ATP Conf. Proc., 1628, 2014, 943–951

[26] Hattori M., Takata S., “Second-order Knudsen-layer analysis for the generalized slip-flow theory I”, Bull. Inst. Math. Acad. Sinica, 10 (2015), 423–448 | MR | Zbl

[27] Hattori M., Takata S., “Second-order Knudsen-layer analysis for the generalized slip-flow theory II: curvature effects”, J. Stat. Phys., 161 (2015), 1010–1036 | DOI | MR | Zbl

[28] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. AN, 357:1 (1997), 1–4

[29] Cheremisin F. G., “Reshenie uravneniya Boltsmana pri perekhode k gidrodinamicheskomu rezhimu techeniya”, Dokl. AN, 373:4 (2000), 483–486

[30] Rogozin O., “Numerical analysis of the nonlinear plane Couette-flow problem of a rarefied gas for hard-sphere molecules”, Eur. J. Mech. B/Fluids, 60 (2016), 148–163 | DOI | MR

[31] Dodulad O. I., Tcheremissine F. G., “Multipoint conservative projection method for computing the Boltzmann collision integral for gas mixtures”, AIP Conf. Proc., 1501 (2012), 302–309 | DOI

[32] Bobylev A. V., “Quasistationary hydrodynamics for the Boltzmann equation”, J. Stat. Phys., 80:5–6 (1995), 1063–1083 | DOI | MR | Zbl

[33] Levermore C. D., Sun W., Trivisa K., “A low Mach number limit of a dispersive Navier-Stokes system”, SIAM J. Math. Anal., 44:3 (2012), 1760–1807 | DOI | MR | Zbl

[34] Tan W., “Blow up criterion for the 3D ghost effect system”, Nonlinear Anal.-Real., 29 (2016), 58–67 | DOI | MR | Zbl

[35] Maslova H. B., “Zadacha Kramersa v kineticheskoi teorii gazov”, Zh. vychisl. matem. i matem. fiz., 22:3 (1982), 700–709

[36] Bardos C., Caflisch R. E., Nicolaenko B., “The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas”, Comm. Pure Appl. Math., 39:3 (1986), 323–352 | DOI | MR | Zbl

[37] Ohwada T., Sone Y., Aoki K., “Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules”, Phys. Fluids A, 1:9 (1989), 1588–1599 | DOI | MR | Zbl

[38] Sone Y., Ohwada T., Aoki K., “Temperature jump and Knudsen layer in a rarefied gas over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules”, Phys. Fluids A, 1:2 (1989), 363–370 | DOI | MR | Zbl

[39] Takata S., Hattori M., Numerical data for the generalized slip-flow theory, , 2015 http://hdl.handle.net/2433/199811

[40] Ohwada T., Sone Y., “Analysis of thermal stress slip flow and negative thermophoresis using the Boltzmann equation for hard-sphere molecules”, Eur. J. Mech. B/Fluids, 11 (1992), 389–414 | MR | Zbl

[41] Bhatnagar P. L., Gross E. P., Krook M., “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94 (1954), 511–525 | DOI | Zbl

[42] Welander P., “On the temperature jump in a rarefied gas”, Ark. Fys., 7 (1954), 507–553 | MR

[43] Sone Y., Yamamoto K., “Flow of rarefied gas over plane wall”, J. Phys. Soc. Japan, 29:2 (1970), 495–508 | DOI

[44] Dodulad O. I., Cheremisin F. G., “Raschety struktury udarnoi volny v odnoatomnom gaze s kontrolem tochnosti”, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 1008–1026 | DOI | Zbl

[45] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210 | Zbl

[46] Sloan I. H., Joe S., Lattice methods for multiple integration, University Press, Oxford, 1994 | MR

[47] Anikin Yu. A., “O tochnosti proektsionnogo scheta integrala stolknovenii”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 697–719 | Zbl

[48] Rogozin O. A., “Computer simulation of slightly rarefied gas flows driven by significant temperature variations and their continuum limit”, Theor. Comput. Fluid Dyn., 28:6 (2014), 573–587 | DOI

[49] Dodulad O. I., Kyuss Yu. Yu., Martynov D. V., Rogozin O. A., Ryabchenkov V. V., Cheremisin F. G., Shuvalov P. V., “Problemno-modeliruyuschaya sreda dlya raschetov i analiza gazokineticheskikh protsessov”, Nano-i mikrosistemnaya tekhn., 2011, no. 2, 12–17

[50] Anikin Yu. A., Dodulad O., Kloss Yu. Yu., Martynov D., Shuvalov P., Tcheremissine F., “Development of applied software for analysis of gas flows in Vacuum devices”, Vacuum, 8:11 (2012), 1770–1777 | DOI

[51] Anikin Yu. A., Derbakova E. P., Dodulad O. I., Kloss Yu. Yu., Martynov D. V., Rogozin O. A., Shuvalov P. V., Tcheremissine F. G., “Computing of gas flows in micro-and nanoscale channels on the base of the Boltzmann kinetic equation”, Procedia Comput. Sci., 1:1 (2010), 735–744 | DOI

[52] Wu L., Zhang J., Reese J. M., Zhang Y., “A fast spectral method for the Boltzmann equation for monatomic gas mixtures”, J. Comput. Phys., 298 (2015), 602–621 | DOI | MR | Zbl

[53] Aoki K., Sone Y., Waniguchi Y., “A rarefied gas flow induced by a temperature field: Numerical analysis of the flow between two coaxial elliptic cylinders with different uniform temperatures”, Comput. Math. Appl., 35:1 (1998), 15–28 | DOI | MR | Zbl

[54] Geuzaine C., Remacle J.-F., “Gmsh: A 3-D finite element mesh generator with built-in pre-and postprocessing facilities”, Int. J. Numer. Meth. Eng., 79:11 (2009), 1309–1331 | DOI | MR | Zbl

[55] Takata S., Hattori M., Hasebe T., “Slip/jump coefficients and Knudsen-layer corrections for the ES model in the generalized slip-flow theory”, AIP Conf. Proc., 1786:1 (2016), 040004 | DOI