@article{ZVMMF_2017_57_7_a1,
author = {T. Zhanlav and V. Ulziibayar and O. Chuluunbaatar},
title = {Necessary and sufficient conditions for the convergence of two- and three-point {Newton-type} iterations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1093--1102},
year = {2017},
volume = {57},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a1/}
}
TY - JOUR AU - T. Zhanlav AU - V. Ulziibayar AU - O. Chuluunbaatar TI - Necessary and sufficient conditions for the convergence of two- and three-point Newton-type iterations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1093 EP - 1102 VL - 57 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a1/ LA - ru ID - ZVMMF_2017_57_7_a1 ER -
%0 Journal Article %A T. Zhanlav %A V. Ulziibayar %A O. Chuluunbaatar %T Necessary and sufficient conditions for the convergence of two- and three-point Newton-type iterations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1093-1102 %V 57 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a1/ %G ru %F ZVMMF_2017_57_7_a1
T. Zhanlav; V. Ulziibayar; O. Chuluunbaatar. Necessary and sufficient conditions for the convergence of two- and three-point Newton-type iterations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 7, pp. 1093-1102. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_7_a1/
[1] Bi W., Ren H., Wu Q., “Three-step iterative methods with eighth-order convergence for solving nonlinear equations”, J. Comput. Appl. Math., 225 (2009), 105–112 | DOI | MR | Zbl
[2] Bi W., Wu Q., Ren H., “A new family of eighth-order iterative methods for solving nonlinear equations”, Appl. Math. Comput., 211 (2009), 236–245 | MR
[3] Cordero A., Hueso J. L., Martinez E., Torregrosa J. R., “New modifications of Potra-Ptak's method with optimal fourth and eighth orders of convergence”, J. Comput. Appl. Math., 234 (2010), 2969–2976 | DOI | MR | Zbl
[4] Cordero A., Torregrosa J. R., Vassileva M. P., “Three-step iterative methods with optimal eighth-order convergence”, J. Comput. Appl. Math., 235 (2011), 3189–3194 | DOI | MR | Zbl
[5] Thukral R., Petkovic M. S., “A family of the three-point methods of optimal order for solving nonlinear equations”, J. Comput. Appl. Math., 233 (2010), 2278–2284 | DOI | MR | Zbl
[6] Wang X., Liu L., “New eighth-order iterative methods for solving nonlinear equations”, J. Comput. Appl. Math., 234 (2010), 1611–1620 | DOI | MR | Zbl
[7] Wang X., Liu L., “Modified Ostrowski's method with eighth-order convergence and high efficient index”, Appl. Math. Lett., 23 (2010), 549–554 | DOI | MR | Zbl
[8] Sharma J. R., Sharma R., “A new family of modified Ostrowski's methods with accelerated eighth-order convergence”, Numer. Algor., 54 (2010), 445–458 | DOI | MR | Zbl
[9] Zhanlav T., Chuluunbaatar O., “Convergence of a continuous analog of Newton's method for solving nonlinear equations”, Numerical Methods and Programming, 10 (2009), 402–407
[10] Chun C., Neta B., “Comparison of several families of optimal eighth order methods”, Appl. Math. Comput., 274 (2010), 762–773 | MR
[11] Chun C., Neta B., “A analysis of a new family of eighth-order optimal methods”, Appl. Math. Comput., 245 (2014), 86–107 | DOI | MR | Zbl
[12] Ham Y., Chun C., Lee S., “Some higher-order modifications of Newton's method for solving nonlinear equations”, J. Comput. Appl. Math., 222 (2008), 477–486 | DOI | MR | Zbl
[13] Zhanlav T., Puzynin I. V., “The convergence of iteration based on a continuous analogy of Newton's method”, Comput. Math. and Math. Phys., 32 (1992), 729–737 | MR | Zbl
[14] King R., “A family of fourth order methods for nonlinear equations”, SIAM. Journal on Numerical Analysis, 10 (1973), 876–879 | DOI | MR | Zbl
[15] Chun C., “A family of composite fourth-order iterative methods for solving nonlinear equations”, Appl. Math. Comput., 187 (2007), 951–956 | MR | Zbl
[16] Maheshwari A. K., “A fourth-order iterative methods for solving nonlinear equations”, Appl. Math. Comput., 211 (2009), 383–391 | MR | Zbl
[17] Zhanlav T., Ulziibayar V., “Modified King's methods with optimal eighth-order convergence and high efficiency index”, Amer. J. Comput. Appl. Math., 6:5 (2016), 177–181
[18] Kou J., Li Y., Wang X., “Some variants of Ostrowski's method with seventh-order convergence”, J. Comput. Appl. Math., 209 (2007), 153–159 | DOI | MR | Zbl
[19] Chun C., Ham Y., “Some sixth-order variants of Ostrowski's methods with seventh-order convergence”, Appl. Math. Comput., 193 (2007), 389–394 | MR | Zbl
[20] Chun C., Neta B., “A new sixth-order scheme for nonlinear equations”, Appl. Math. Lett., 25 (2012), 185–189 | DOI | MR | Zbl
[21] Traub G. B., Iterative methods for solution of equations, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl