Stability of the Kolmogorov flow and its modifications
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 1003-1022 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recurrence formulas are obtained for the kth term of the long wavelength asymptotics in the stability problem for general two-dimensional viscous incompressible shear flows. It is shown that the eigenvalues of the linear eigenvalue problem are odd functions of the wave number, while the critical values of viscosity are even functions. If the velocity averaged over the long period is nonzero, then the loss of stability is oscillatory. If the averaged velocity is zero, then the loss of stability can be monotone or oscillatory. If the deviation of the velocity from its period-average value is an odd function of spatial variable about some $x_0$, then the expansion coefficients of the velocity perturbations are even functions about $x_0$ for even powers of the wave number and odd functions about for $x_0$ odd powers of the wave number, while the expansion coefficients of the pressure perturbations have an opposite property. In this case, the eigenvalues can be found precisely. As a result, the monotone loss of stability in the Kolmogorov flow can be substantiated by a method other than those available in the literature.
@article{ZVMMF_2017_57_6_a7,
     author = {S. V. Revina},
     title = {Stability of the {Kolmogorov} flow and its modifications},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1003--1022},
     year = {2017},
     volume = {57},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a7/}
}
TY  - JOUR
AU  - S. V. Revina
TI  - Stability of the Kolmogorov flow and its modifications
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1003
EP  - 1022
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a7/
LA  - ru
ID  - ZVMMF_2017_57_6_a7
ER  - 
%0 Journal Article
%A S. V. Revina
%T Stability of the Kolmogorov flow and its modifications
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1003-1022
%V 57
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a7/
%G ru
%F ZVMMF_2017_57_6_a7
S. V. Revina. Stability of the Kolmogorov flow and its modifications. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 1003-1022. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a7/

[1] Yudovich V. I., “Primer rozhdeniya vtorichnogo statsionarnogo ili periodicheskogo techeniya pri potere ustoichivosti laminarnogo techeniya vyazkoi neszhimaemoi zhidkosti”, Prikl. matem. i mekhan., 29:3 (1965), 455–467

[2] Reynolds O., “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels”, Phil. Trans. R. Soc. Lond., 174 (1883), 935–982 | DOI

[3] Arnold V. I., Meshalkin L. D., “Seminar A. N. Kolmogorova po izbrannym voprosam analiza (1958–1959)”, Uspekhi matem. nauk, 15:1 (1960), 247–250

[4] Meshalkin L. D., Sinai Ya. G., “Issledovanie ustoichivosti statsionarnogo resheniya odnoi sistemy uravnenii ploskogo dvizheniya vyazkoi zhidkosti”, Prikl. matem. i mekhan., 25:6 (1961), 1140–1143 | Zbl

[5] Troshkin O. V., “Algebraicheskaya struktura dvumernykh statsionarnykh uravnenii Nave-Stoksa i nelokalnye teoremy edinstvennosti”, Dokl. AN SSSR, 298:6 (1988), 1372–1376 | Zbl

[6] Oparina E. I., Troshkin O. V., “Ustoichivost techeniya Kolmogorova v kanale s tverdymi stenkami”, Dokl. AN, 398:4 (2004), 487–491

[7] Troshkin O. V., “Dissipativnyi volchok na slabokompaktnoi algebre Li i ustoichivost osnovnykh techenii v ploskom kanale”, Dokl. AN, 442:2 (2012), 184–189

[8] Troshkin O. V., “K nelineinoi ustoichivosti techenii Kuetta, Puazeilya i Kolmogorova v ploskom kanale”, Dokl. AN, 443:1 (2012), 29–33 | Zbl

[9] Belotserkovskii S. O., Mirabel A. P., Chusov M. A., “O postroenii zakriticheskogo rezhima dlya ploskogo periodicheskogo techeniya”, Izv. AN SSSR. Fiz. atmosf. i okeana, 14:1 (1978), 11–20 | Zbl

[10] Obukhov A. M., “Techenie Kolmogorova i ego laboratornoe modelirovanie”, Uspekhi matem. nauk, 35:4(232) (1983), 101–111

[11] Belotserkovskii S. O., Oparin A. M., Chislennyi eksperiment: ot poryadka k khaosu, Nauka, M., 2000

[12] Fortova S. V., “Chislennoe modelirovanie trekhmernogo techeniya Kolmogorova dlya sdvigovogo sloya”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 433–441 | DOI | Zbl

[13] Belotserkovskii O. M., Konyukhov A. V., Oparin A. M., Troshkin O. V., Fortova S. V., “O strukturirovanii khaosa”, Zh. vychisl. matem. i matem. fiz., 51:2 (2011), 237–250 | Zbl

[14] Fortova S. V., “Sravnitelnyi analiz formirovaniya vikhrevykh kaskadov v razlichnykh turbulentnykh zadachakh”, Zh. vychisl. matem. i matem. fiz., 55:2 (2015), 302–309 | DOI | Zbl

[15] Chandler G., Kerswell R., “Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow”, J. Fluid Mech., 722 (2013), 554–595 | DOI | MR | Zbl

[16] Lucas D., Kerswell R., Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow, 1 Apr 2015, arXiv: 1406.1820v2 [physics.flu-dyn]

[17] Yudovich V. I., “O neustoichivosti parallelnykh techenii vyazkoi neszhimaemoi zhidkosti otnositelno prostranstvenno-periodicheskikh vozmuschenii”, Chislennye metody resheniya zadach matematicheskoi fiziki, Nauka, M., 1966, 242–249

[18] Yudovich V. I., “Ob avtokolebaniyakh, voznikayuschikh pri potere ustoichivosti parallelnykh techenii vyazkoi zhidkosti otnositelno dlinnovolnovykh periodicheskikh vozmuschenii”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1973, no. 1, 32–35

[19] Yudovich V. I., “Neustoichivost dlinnovolnovykh techenii vyazkoi zhidkosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1990, no. 4, 31–35

[20] Revina S. V., Yudovich V. I., “Vozniknovenie avtokolebanii pri potere ustoichivosti prostranstvenno-periodicheskikh trekhmernykh techenii vyazkoi zhidkosti otnositelno dlinnovolnovykh vozmuschenii”, Izv. RAN. Mekhan. zhidkosti i gaza, 2001, no. 2, 29–41

[21] Melekhov A. P., Revina S. V., “Vozniknovenie avtokolebanii pri potere ustoichivosti prostranstvenno-periodicheskikh dvumernykh techenii vyazkoi zhidkosti otnositelno dlinnovolnovykh vozmuschenii”, Izv. RAN. Mekhan. zhidkosti i gaza, 2008, no. 2, 41–56

[22] Revina S. V., “Dlinnovolnovaya asimptotika zadachi ustoichivosti periodicheskikh po vremeni techenii”, Sovremennye problemy mekhaniki sploshnoi sredy, Trudy XV mezhdunar. konf., v. 2, Izd-vo YuFU, Rostov n/D, 2011, 204–208

[23] Revina S. V., “Rekurrentnye formuly dlinnovolnovoi asimptotiki zadachi ustoichivosti sdvigovykh techenii”, Zh. vychisl. matem. i matem. fiz., 53:8 (2013), 1387–1401 | DOI | Zbl

[24] Revina S. V., “Ustoichivost prostranstvenno-periodicheskikh i pochti periodicheskikh techenii vyazkoi zhidkosti”, Matematicheskii forum (Itogi nauki. Yug Rossii), 8:2 (2014), 130–141

[25] Revina S. V., Zadacha ustoichivosti techeniya Kolmogorova i ego modifikatsii, Dep. v VINITI 11.01.16. No 8-V2016, M., 2016

[26] Vainberg M. M., Trenogin V. A., “Metody Lyapunova i Shmidta v teorii nelineinykh uravnenii i ikh dalneishee razvitie”, Uspekhi matem. nauk, 17:2(104) (1962), 13–75 | Zbl