Stability of the Kolmogorov flow and its modifications
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 1003-1022
Voir la notice de l'article provenant de la source Math-Net.Ru
Recurrence formulas are obtained for the kth term of the long wavelength asymptotics in the stability problem for general two-dimensional viscous incompressible shear flows. It is shown that the eigenvalues of the linear eigenvalue problem are odd functions of the wave number, while the critical values of viscosity are even functions. If the velocity averaged over the long period is nonzero, then the loss of stability is oscillatory. If the averaged velocity is zero, then the loss of stability can be monotone or oscillatory. If the deviation of the velocity from its period-average value is an odd function of spatial variable about some $x_0$, then the expansion coefficients of the velocity perturbations are even functions about $x_0$ for even powers of the wave number and odd functions about for $x_0$ odd powers of the wave number, while the expansion coefficients of the pressure perturbations have an opposite property. In this case, the eigenvalues can be found precisely. As a result, the monotone loss of stability in the Kolmogorov flow can be substantiated by a method other than those available in the literature.
@article{ZVMMF_2017_57_6_a7,
author = {S. V. Revina},
title = {Stability of the {Kolmogorov} flow and its modifications},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1003--1022},
publisher = {mathdoc},
volume = {57},
number = {6},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a7/}
}
TY - JOUR AU - S. V. Revina TI - Stability of the Kolmogorov flow and its modifications JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1003 EP - 1022 VL - 57 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a7/ LA - ru ID - ZVMMF_2017_57_6_a7 ER -
S. V. Revina. Stability of the Kolmogorov flow and its modifications. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 1003-1022. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a7/