Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 985-1002 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional linearized model of coastal sediment transport due to the action of waves is studied. Up till now, one-dimensional sediment transport models have been used. The model under study makes allowance for complicated bottom relief, the porosity of the bottom sediment, the size and density of sediment particles, gravity, wave-generated shear stress, and other factors. For the corresponding initial-boundary value problem the uniqueness of a solution is proved, and an a priori estimate for the solution norm is obtained depending on integral estimates of the right-hand side, boundary conditions, and the norm of the initial condition. A conservative difference scheme with weights is constructed that approximates the continuous initial-boundary value problem. Sufficient conditions for the stability of the scheme, which impose constraints on its time step, are given. Numerical experiments for test problems of bottom sediment transport and bottom relief transformation are performed. The numerical results agree with actual physical experiments.
@article{ZVMMF_2017_57_6_a6,
     author = {V. V. Sidoryakina and A. I. Sukhinov},
     title = {Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {985--1002},
     year = {2017},
     volume = {57},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a6/}
}
TY  - JOUR
AU  - V. V. Sidoryakina
AU  - A. I. Sukhinov
TI  - Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 985
EP  - 1002
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a6/
LA  - ru
ID  - ZVMMF_2017_57_6_a6
ER  - 
%0 Journal Article
%A V. V. Sidoryakina
%A A. I. Sukhinov
%T Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 985-1002
%V 57
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a6/
%G ru
%F ZVMMF_2017_57_6_a6
V. V. Sidoryakina; A. I. Sukhinov. Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 985-1002. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a6/

[1] Leontev I. O., Pribrezhnaya dinamika: volny, techeniya, potoki nanosov, GEOS, M., 2001, 272 pp.

[2] Xiaoying Liu, Shi Qi, Yuan Huang, Yuehong Chen, Pengfei Du, “Predictive modeling in sediment transportation across multiple spatial scales in the Jialing River Basin of China”, Internat. J. Sediment Research, 30:3 (2015), 250–255 | DOI

[3] Marchuk G. I., Dymnikov V. P., Zalesnyi V. B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii, Gidrometeoizdat, L., 1987, 296 pp.

[4] Sukhinov A. I., Chistyakov A. E., Timofeeva E. F., Shishenya A. V., “Matematicheskaya model rascheta pribrezhnykh volnovykh protsessov”, Matem. modelirovanie, 24:8 (2012), 32–44 | Zbl

[5] Sukhinov A. I., Chistyakov A. E., Protsenko E. A., “Matematicheskoe modelirovanie transporta nanosov v pribrezhnoi zone melkovodnykh vodoemov”, Matem. modelirovanie, 25:12 (2013), 65–82 | Zbl

[6] Sukhinov A. I., Chistyakov A. E., Protsenko E. A., “Matematicheskoe modelirovanie transporta nanosov v pribrezhnykh sistemakh na mnogoprotsessornoi vychislitelnoi sisteme”, Vychisl. metody i programmirovanie: novye vychisl. tekhnologii, 15:4 (2014), 610–620

[7] Sukhinov A. I., Protsenko E. A., Chistyakov A. E., Shreter S. A., “Sravnenie vychislitelnykh effektivnostei yavnoi i neyavnoi skhem dlya zadachi transporta nanosov v pribrezhnykh vodnykh sistemakh”, Vychisl. metody i programmirovanie: novye vychisl. tekhnologii, 16:3 (2015), 328–338

[8] Shishenya A. V., Sukhinov A. I., “Postroenie regulyarizirovannoi matematicheskoi modeli gidrodinamiki i sgonno-nagonnykh yavlenii v melkovodnykh vodoemakh i ee parallelnaya realizatsiya na parallelnoi vychislitelnoi sisteme s obschei pamyatyu”, Izvestiya YuFU. Tekhn. nauki, 2014, no. 12(161), 219–230

[9] Chetverushkin B. N., “Predely detalizatsii i formulirovka modelei uravnenii sploshnykh sred”, Matem. modelirovanie, 24:11 (2012), 33–52 | Zbl

[10] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Uchebnik, 4-e izd., ispr. i dop., Nauka, M., 1981, 512 pp.

[11] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp.

[12] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp.

[13] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983, 616 pp.

[14] Vasilev V. S., Sukhinov A. I., “Pretsizionnye dvumernye modeli melkikh vodoemov”, Matem. modelirovanie, 15:10 (2003), 17–34 | Zbl

[15] Sukhinov A. I., “Pretsizionnye modeli gidrodinamiki i opyt primeneniya v predskazanii i rekonstruktsii chrezvychainykh situatsii v Azovskom more”, Izv. TRTU, 2006, no. 3(58), 228–235

[16] Sukhinov A. I., Shishenya A. V., “Povyshenie effektivnosti poperemenno-treugolnogo metoda na osnove utochnennykh spektralnykh otsenok”, Matem. modelirovanie, 24:11 (2012), 20–32 | Zbl

[17] Sukhinov A. I., Chistyakov A. E., “Adaptivnyi modifitsirovannyi poperemenno-treugolnyi iteratsionnyi metod dlya resheniya setochnykh uravnenii s nesamosopryazhennym operatorom”, Matem. modelirovanie, 24:1 (2012), 3–20