@article{ZVMMF_2017_57_6_a5,
author = {N. P. Trotsenko},
title = {On power series representing solutions of the one-dimensional time-independent {Schr\"odinger} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {973--984},
year = {2017},
volume = {57},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a5/}
}
TY - JOUR AU - N. P. Trotsenko TI - On power series representing solutions of the one-dimensional time-independent Schrödinger equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 973 EP - 984 VL - 57 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a5/ LA - ru ID - ZVMMF_2017_57_6_a5 ER -
%0 Journal Article %A N. P. Trotsenko %T On power series representing solutions of the one-dimensional time-independent Schrödinger equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 973-984 %V 57 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a5/ %G ru %F ZVMMF_2017_57_6_a5
N. P. Trotsenko. On power series representing solutions of the one-dimensional time-independent Schrödinger equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 973-984. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a5/
[1] Vinogradov A. V., Popov A. V., Prokopovich D. V., “O yavnom parametricheskom opisanii voln v periodicheskikh sredakh”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 1119–1130 | Zbl
[2] Kovalev M. D., “Chislo energeticheskikh urovnei chastitsy v grebenchatoi strukture”, Zh. vychisl. matem. i matem. fiz., 47:9 (2007), 1557–1575
[3] Maier A. A., Kovalev M. D., “Dispersionnoe uravnenie dlya sobstvennykh znachenii effektivnogo pokazatelya prelomleniya v mnogosloinoi volnovodnoi strukture”, Dokl. AN, 407:6 (2006), 766–769 | Zbl
[4] Kovalev M. D., “Ob energeticheskikh urovnyakh chastitsy v grebenchatoi strukture”, Dokl. AN, 419:6 (2008), 749–753 | Zbl
[5] Sobko A. A., “Vychislenie sobstvennykh znachenii diskretnogo spektra uravneniya Shredingera dlya proizvolnykh odnomernykh, finitnykh, chetnykh potentsialnykh yam”, Dokl. AN, 414:4 (2007), 464–468 | Zbl
[6] Komarov D. A., Morev S. P., Darmaev A. N., Ryadnov A. Yu., “Chislennoe reshenie uravneniya Shredingera dlya elektrona v potentsialnoi yame proizvolnoi formy”, Radiotekhnika i elektronika, 59:8 (2014), 799–803 | DOI
[7] Masoero D., “Poles of integrale tritronquee and anharmonic oscillators. A WKB approach”, J. Phys. A: Math. Theor., 43:9 (2010), 095201 | DOI | MR | Zbl
[8] Dorey P., Tateo R., “On the relation between Stokes multipliers and the TQ systems of conformal field theory”, Nucl. Phys., B563 (1999), 573–602 | DOI | MR | Zbl
[9] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976