A relation between two simple localized solutions of the wave equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 958-960 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relation between two previously known exact solutions of the wave equation that describe propagation of localized waves is found.
@article{ZVMMF_2017_57_6_a3,
     author = {A. S. Blagoveshchenskii and A. P. Kiselev},
     title = {A relation between two simple localized solutions of the wave equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {958--960},
     year = {2017},
     volume = {57},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a3/}
}
TY  - JOUR
AU  - A. S. Blagoveshchenskii
AU  - A. P. Kiselev
TI  - A relation between two simple localized solutions of the wave equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 958
EP  - 960
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a3/
LA  - ru
ID  - ZVMMF_2017_57_6_a3
ER  - 
%0 Journal Article
%A A. S. Blagoveshchenskii
%A A. P. Kiselev
%T A relation between two simple localized solutions of the wave equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 958-960
%V 57
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a3/
%G ru
%F ZVMMF_2017_57_6_a3
A. S. Blagoveshchenskii; A. P. Kiselev. A relation between two simple localized solutions of the wave equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 958-960. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a3/

[1] Hernández-Figueroa H. E., Zamboni-Rached M., Recami E. (eds.), Localized Waves, Wiley-VCH Verlag, Berlin, 2013

[2] Tagirdzhanov A. M., Kiselev A. P., “Kompleksifitsirovannye sfericheskie volny i ikh istochniki. Obzor”, Opt. spektrosk., 119:2 (2015), 271–281 | DOI

[3] Sheppard C. J. R., Saghafi S., “Beam modes beyond the paraxial approximation: a scalar treatment”, Phys. Rev. A, 57:4 (1998), 2971–2979 | DOI

[4] Tagirdzhanov A. M., Blagovestchenskii A. S., Kiselev A. P., “‘Complex source’ wavefields: sources in real space”, J. Phys. A, 44:42 (2011), 425203 | DOI | MR | Zbl

[5] Hillion P., “The Courant–Hilbert solutions of the wave equation”, J. Math. Phys., 33:8 (1992), 2749–2753 | DOI | MR | Zbl

[6] Heyman E., Felsen L. B., “Complex-source pulsed-beam fields”, J. Opt. Soc. Amer. A, 6:6 (1989), 806–817 | DOI | MR

[7] Blagoveschenskii A. S., Kiselev A. P., Tagirdzhanov A. M., “Prostye resheniya volnovogo uravneniya s singulyarnostyu v beguschei tochke, osnovannye na kompleksifitsirovannom reshenii Beitmena”, Zap. nauchn. semin. POMI RAN, 438, 2015, 73–82

[8] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Mir, M., 1986