Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 934-957 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of solution continuation with respect to a parameter is used to solve an initial value problem for a system of ordinary differential equations with several limiting singular points. The solution is continued using an argument (called the best) measured along the integral curve of the problem. Additionally, a modified argument is introduced that is locally equivalent to the best one in the considered domain. Theoretical results are obtained concerning the conditioning of the Cauchy problem parametrized by the modified argument in a neighborhood of each point of its integral curve.
@article{ZVMMF_2017_57_6_a2,
     author = {E. B. Kuznetsov and S. S. Leonov},
     title = {Parametrization of the {Cauchy} problem for systems of ordinary differential equations with limiting singular points},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {934--957},
     year = {2017},
     volume = {57},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a2/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
AU  - S. S. Leonov
TI  - Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 934
EP  - 957
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a2/
LA  - ru
ID  - ZVMMF_2017_57_6_a2
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%A S. S. Leonov
%T Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 934-957
%V 57
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a2/
%G ru
%F ZVMMF_2017_57_6_a2
E. B. Kuznetsov; S. S. Leonov. Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 934-957. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a2/

[1] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999

[2] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990

[3] Galanin M. P., Khodzhaeva S. R., “Metody resheniya zhestkikh obyknovennykh differentsialnykh uravnenii. Rezultaty testovykh raschetov”, Prepr. IPM im. M.V. Keldysha, 2013, 098, 29 pp. http://library.keldysh.ru/preprint.asp?id=2013-98

[4] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[5] Davidenko D. F., “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii”, Dokl. AN SSSR, 88:4 (1953), 601–602 | Zbl

[6] Davidenko D. F., “O priblizhennom reshenii sistem nelineinykh uravnenii”, Ukr. matem. zh., 5:2 (1953), 196–206 | Zbl

[7] Grigolyuk E. I., Shalashilin V. I., Metod prodolzheniya resheniya po parametru v nelineinykh zadachakh mekhaniki tverdogo deformiruemogo tela, Nauka, M., 1988

[8] Kuznetsov E. B., Shalashilin V. I., “Zadacha Koshi kak zadacha prodolzheniya resheniya po parametru”, Zh. vychisl. matem. i matem. fiz., 33:12 (1993), 1792–1805 | Zbl

[9] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1540–1551 | Zbl

[10] Kuznetsov E. B., Yakimovich A. Yu., “Nailuchshaya parametrizatsiya v zadachakh priblizheniya krivykh i poverkhnostei”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 760–774 | Zbl

[11] Kuznetsov E. B., “O nailuchshei parametrizatsii”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2129–2140

[12] Kuznetsov E. B., Leonov S. S., “Chistyi izgib balki iz raznomodulnogo materiala v usloviyakh polzuchesti”, Vestnik Yuzhno-Uralskogo gos. un-ta. Ser. “Matematicheskoe modelirovanie i programmirovanie”, 6:4 (2013), 26–38

[13] Kalitkin N. N., Poshivailo I. P., “Reshenie zadachi Koshi dlya zhestkikh sistem s garantirovannoi tochnostyu metodom dliny dugi”, Matem. modelirovanie, 26:7 (2014), 3–18

[14] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya resheniya v tochkakh bifurkatsii”, Differents. ur-niya, 45:8 (2009), 1194–1198 | Zbl

[15] Krasnikov S. D., Kuznetsov E. B., “Chislennoe prodolzhenie resheniya v osobykh tochkakh korazmernosti edinitsa”, Zh. vychisl. matem. i matem. fiz., 55:11 (2015), 1835–1856 | DOI | Zbl

[16] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM, Laboratoriya znanii, M., 2006

[17] Kudryavtsev L. D., Kurs matematicheskogo analiza, V 3 t., v. 2, Ryady. Differentsialnoe i integralnoe ischislenie funktsii mnogikh peremennykh, Drofa, M., 2004