@article{ZVMMF_2017_57_6_a12,
author = {A. Alsaedi and M. Bilal Ashraf and T. Hayat and S. A. Shehzad},
title = {Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1080},
year = {2017},
volume = {57},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a12/}
}
TY - JOUR AU - A. Alsaedi AU - M. Bilal Ashraf AU - T. Hayat AU - S. A. Shehzad TI - Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1080 VL - 57 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a12/ LA - en ID - ZVMMF_2017_57_6_a12 ER -
%0 Journal Article %A A. Alsaedi %A M. Bilal Ashraf %A T. Hayat %A S. A. Shehzad %T Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1080 %V 57 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a12/ %G en %F ZVMMF_2017_57_6_a12
A. Alsaedi; M. Bilal Ashraf; T. Hayat; S. A. Shehzad. Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a12/
[1] L. J. Crane, “Flow past a stretching plate”, Z. Angew. Math. Phys., 21 (1970), 645-647 | DOI
[2] M. M. Rashidi, A. J. Chamkha, M. Keimanesh, “Application of multi-step differential transform method on flow of a second-grade fluid over a stretching or shrinking sheet”, Am. J. Comput. Math., 6 (2011), 119–128 | DOI | MR
[3] A. Ahmad, S. Asghar, “Flow of a second grade fluid over a sheet stretching with arbitrary velocities subject to a transverse magnetic field”, Appl. Math. Lett., 24 (2011), 1905–1909 | DOI | MR | Zbl
[4] T. Hayat, S. A. Shehzad, M. Qasim, S. Obaidat, “Flow of a second grade fluid with convective boundary conditions”, Thermal Sci. S, 15 (2011), 253–261 | DOI
[5] M. Nazar, C. Fetecau, D. Vieru, C. Fetecau, “New exact solutions corresponding to the second problem of Stokes for second grade fluids”, Nonlinear Anal. Real World Appl., 11 (2010), 584–591 | DOI | MR | Zbl
[6] R. Nazar, N. A. Latip, “Numerical investigation of three–dimensional boundary layer flow due to a stretching surface in a viscoelastic fluid”, Eur. J. Sci. Res., 29 (2009), 509–517
[7] K. Bhattacharyya, M. S. Uddin, G. C. Layek, M. A. Malek, “Effect of chemically reactive solute diffusion on boundary layer flow past a stretching surface with suction or blowing”, J. Math. Math. Sci., 25 (2010), 41–48
[8] R. Cortell, “Viscous flow and heat transfer over a nonlinearly stretching sheet”, Appl. Math. Comput., 184 (2007), 864–873 | MR | Zbl
[9] S. Abbasbandy, H. R. Ghehsareh, I. Hashim, “An approximate solution of the MHD flow over a nonlinearly stretching sheet by rational Chebyshev collocation method”, UPB. Sci. Bull., 74 (2012) | MR | Zbl
[10] S. Mukhopadhyay, “Casson fluid flow and heat transfer over a nonlinearly stretching surface”, Chin. Phys. B, 22 (2013), 074701 | DOI
[11] M. Turkyilmazoglu, I. Pop, “Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid”, Int. J. Heat Mass Transf., 57 (2013), 82–88 | DOI
[12] M. Q. Al–Odat, R. A. Damesh, T. A. Al–Azab, “Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field”, Int. J. Appl. Mech. Eng., 11 (2006), 289–299 | Zbl
[13] M. Sajid, T. Hayat, “Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet”, Int. Commun. Heat Mass Transfer, 35 (2008), 347–356 | DOI
[14] S. Nadeem, C. Lee, “Boundary layer flow of nanofluid over an exponentially stretching surface”, Nanoscale Res. Lett., 7 (2012), 94 | DOI
[15] K. Bhattacharyya, “Boundary layer flow and heat transfer over an exponentially shrinking sheet”, Chin. Phys. Lett., 28 (2011), 074701 | DOI
[16] S. Mukhopadhyay, K. Vajravelu, R. A. V. Gorder, “Casson fluid flow and heat transfer at an exponentially stretching permeable surface”, J. Appl. Mech., 80 (2013), 054502 | DOI
[17] M. Mustafa, T. Hayat, S. Obaidat, “Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions”, Int. J. Numer. Meth. Heat Fluid Flow, 23 (2013), 945–959 | DOI | MR | Zbl
[18] I. C. Liu, H. H. Wang, Y. F. Peng, “Flow and heat transfer for three dimensional flow over an exponentially stretching surface”, Chem. Eng. Commun., 200 (2013), 253–268 | DOI
[19] S. Mukhopadhyay, G. C. Layek, S. K. A. Samad, “Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity”, Int. J. Heat Mass Transf., 48 (2005), 4460–4466 | DOI | Zbl
[20] S. S. Motsa, T. Hayat, O. M. Aldossary, “MHD flow of upper–convected Maxwell fluid over porous stretching sheet using successive Taylor series linearization method”, Appl. Math. Mech., 2012, 975–990 | DOI | MR | Zbl
[21] M. M. Rashidi, E. Erfani, “A new analytical study of MHD stagnation–point flow in porous media with heat transfer”, Comput. Fluids, 40 (2011), 172–178 | DOI | Zbl
[22] S. Mukhopadhyay, “Effects of slip on unsteady mixed convective flow and heat transfer past a stretching surface”, Chin. Phys. Lett., 27 (2010), 124401 | DOI
[23] T. Hayat, Z. Abbas, I. Pop, S. Asghar, “Effects of radiation and magnetic field on the mixed convection stagnation–point flow over a vertical stretching sheet in a porous medium”, Int. J. Heat Mass Transf., 53 (2010), 466–474 | DOI | Zbl
[24] M. Turkyilmazoglu, “The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface”, Int. J. Mech. Sci., 77 (2013), 263–268 | DOI
[25] E. M. A. Elbashbeshy, D. A. Aldawody, “Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink”, Comput. Math. Appl., 60 (2010), 2806–2811 | DOI | MR | Zbl
[26] R. Kandasamy, T. Hayat, S. Obaidat, “Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink”, Nuclear Eng. Design, 241 (2011), 2155–2161 | DOI
[27] A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition”, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1064–1068 | DOI
[28] O. D. Makinde, A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Therm. Sci., 50 (2011), 1326–1332 | DOI
[29] S. A. Shehzad, T. Hayat, A. Alsaedi, “Three–dimensional flow of Jeffery fluid with convective surface boundary conditions”, Int. J. Heat Mass Transf., 55 (2012), 3971–3976 | DOI
[30] M. M. Rashidi, N. F. Mehr, A. Hosseini, O. A. Beg, T. K. Hung, “Homotopy simulation of nanofluid dynamics from a nonlinearly stretching isothermal permeable sheet with transpiration”, Meccanica | DOI
[31] Y.P. Liu, S. J. Liao, Z. B. Li, “Symbolic computation of strongly nonlinear periodic oscillations”, J. Symb. Comput., 55 (2013), 72–95 | DOI | MR | Zbl
[32] S. Abbasbandy, M. S. Hashemi, I. Hashim, “On convergence of homotopy analysis method and its application to fractional integro–differential equations”, Quaestiones Math., 36 (2013), 93–105 | DOI | MR | Zbl
[33] L. Zheng, J. Niu, X. Zhang, Y. Gao, “MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump”, Math. Comput. Model., 56 (2012), 133–144 | DOI | MR | Zbl
[34] M. M. Rashidi, S.C. Rajvanshi, M. Keimanesh, “Study of Pulsatile flow in a porous annulus with the homotopy analysis method”, Int. J. Numer. Methods Heat Fluid Flow, 22 (2012), 971–989 | DOI | Zbl
[35] M. Turkyilmazoglu, “Solution of Thomas–Fermi equation with a convergent approach”, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4097–4103 | DOI | MR | Zbl
[36] T. Hayat, M. B. Ashraf, H. H. Alsulami, M. S. Alhuthali, “Three dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions”, Plos One, 9 (2014), e90038 | DOI
[37] H. N. Hassan, M. M. Rashidi, “An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method”, Int. J. Numer. Methods Heat Fluid Flow, 24:2 (2014), 419–437 | DOI | MR | Zbl
[38] T. Hayat, S. A. Shehzad, M. B. Ashraf, A. Alsaedi, “Magnetohydrodynamic mixed convection flow of thixotropic fluid with thermophoresis and Joule heating”, J. Thermophys. Heat Transf., 27 (2013), 733–740 | DOI
[39] T. Hayat, M. B. Ashraf, A. Alsaedi, “Small–time solutions for the thin–film flow of a Casson fluid due to a suddenly moved plate”, J. Aerosp. Eng., 27 (2014), 04014034 | DOI
[40] T. Hayat, M. Farooq, A. Alsaedi, “Melting heat transfer in the stagnation point flow of Maxwell fluid with double–diffusive convection”, Int. J. Numer. Methods Heat Fluid Flow, 24 (2014), 760–774 | DOI | MR | Zbl