Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Heat and mass transfer effects in the three-dimensional mixed convection flow of a viscoelastic fluid with internal heat source/sink and chemical reaction have been investigated in the present work. The flow generation is because of an exponentially stretching surface. Magnetic field normal to the direction of flow is considered. Convective conditions at the surface are also encountered. Appropriate similarity transformations are utilized to reduce the boundary layer partial differential equations into the ordinary differential equations. The homotopy analysis method is used to develop the solution expressions. Impacts of different controlling parameters such as ratio parameter, Hartman number, internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter and Biot numbers on the velocity, temperature and concentration profiles are analyzed. The local Nusselt and Sherwood numbers are sketched and examined.
@article{ZVMMF_2017_57_6_a12,
     author = {A. Alsaedi and M. Bilal Ashraf and T. Hayat and S. A. Shehzad},
     title = {Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1080},
     year = {2017},
     volume = {57},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a12/}
}
TY  - JOUR
AU  - A. Alsaedi
AU  - M. Bilal Ashraf
AU  - T. Hayat
AU  - S. A. Shehzad
TI  - Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1080
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a12/
LA  - en
ID  - ZVMMF_2017_57_6_a12
ER  - 
%0 Journal Article
%A A. Alsaedi
%A M. Bilal Ashraf
%A T. Hayat
%A S. A. Shehzad
%T Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1080
%V 57
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a12/
%G en
%F ZVMMF_2017_57_6_a12
A. Alsaedi; M. Bilal Ashraf; T. Hayat; S. A. Shehzad. Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a12/

[1] L. J. Crane, “Flow past a stretching plate”, Z. Angew. Math. Phys., 21 (1970), 645-647 | DOI

[2] M. M. Rashidi, A. J. Chamkha, M. Keimanesh, “Application of multi-step differential transform method on flow of a second-grade fluid over a stretching or shrinking sheet”, Am. J. Comput. Math., 6 (2011), 119–128 | DOI | MR

[3] A. Ahmad, S. Asghar, “Flow of a second grade fluid over a sheet stretching with arbitrary velocities subject to a transverse magnetic field”, Appl. Math. Lett., 24 (2011), 1905–1909 | DOI | MR | Zbl

[4] T. Hayat, S. A. Shehzad, M. Qasim, S. Obaidat, “Flow of a second grade fluid with convective boundary conditions”, Thermal Sci. S, 15 (2011), 253–261 | DOI

[5] M. Nazar, C. Fetecau, D. Vieru, C. Fetecau, “New exact solutions corresponding to the second problem of Stokes for second grade fluids”, Nonlinear Anal. Real World Appl., 11 (2010), 584–591 | DOI | MR | Zbl

[6] R. Nazar, N. A. Latip, “Numerical investigation of three–dimensional boundary layer flow due to a stretching surface in a viscoelastic fluid”, Eur. J. Sci. Res., 29 (2009), 509–517

[7] K. Bhattacharyya, M. S. Uddin, G. C. Layek, M. A. Malek, “Effect of chemically reactive solute diffusion on boundary layer flow past a stretching surface with suction or blowing”, J. Math. Math. Sci., 25 (2010), 41–48

[8] R. Cortell, “Viscous flow and heat transfer over a nonlinearly stretching sheet”, Appl. Math. Comput., 184 (2007), 864–873 | MR | Zbl

[9] S. Abbasbandy, H. R. Ghehsareh, I. Hashim, “An approximate solution of the MHD flow over a nonlinearly stretching sheet by rational Chebyshev collocation method”, UPB. Sci. Bull., 74 (2012) | MR | Zbl

[10] S. Mukhopadhyay, “Casson fluid flow and heat transfer over a nonlinearly stretching surface”, Chin. Phys. B, 22 (2013), 074701 | DOI

[11] M. Turkyilmazoglu, I. Pop, “Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid”, Int. J. Heat Mass Transf., 57 (2013), 82–88 | DOI

[12] M. Q. Al–Odat, R. A. Damesh, T. A. Al–Azab, “Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field”, Int. J. Appl. Mech. Eng., 11 (2006), 289–299 | Zbl

[13] M. Sajid, T. Hayat, “Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet”, Int. Commun. Heat Mass Transfer, 35 (2008), 347–356 | DOI

[14] S. Nadeem, C. Lee, “Boundary layer flow of nanofluid over an exponentially stretching surface”, Nanoscale Res. Lett., 7 (2012), 94 | DOI

[15] K. Bhattacharyya, “Boundary layer flow and heat transfer over an exponentially shrinking sheet”, Chin. Phys. Lett., 28 (2011), 074701 | DOI

[16] S. Mukhopadhyay, K. Vajravelu, R. A. V. Gorder, “Casson fluid flow and heat transfer at an exponentially stretching permeable surface”, J. Appl. Mech., 80 (2013), 054502 | DOI

[17] M. Mustafa, T. Hayat, S. Obaidat, “Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions”, Int. J. Numer. Meth. Heat Fluid Flow, 23 (2013), 945–959 | DOI | MR | Zbl

[18] I. C. Liu, H. H. Wang, Y. F. Peng, “Flow and heat transfer for three dimensional flow over an exponentially stretching surface”, Chem. Eng. Commun., 200 (2013), 253–268 | DOI

[19] S. Mukhopadhyay, G. C. Layek, S. K. A. Samad, “Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity”, Int. J. Heat Mass Transf., 48 (2005), 4460–4466 | DOI | Zbl

[20] S. S. Motsa, T. Hayat, O. M. Aldossary, “MHD flow of upper–convected Maxwell fluid over porous stretching sheet using successive Taylor series linearization method”, Appl. Math. Mech., 2012, 975–990 | DOI | MR | Zbl

[21] M. M. Rashidi, E. Erfani, “A new analytical study of MHD stagnation–point flow in porous media with heat transfer”, Comput. Fluids, 40 (2011), 172–178 | DOI | Zbl

[22] S. Mukhopadhyay, “Effects of slip on unsteady mixed convective flow and heat transfer past a stretching surface”, Chin. Phys. Lett., 27 (2010), 124401 | DOI

[23] T. Hayat, Z. Abbas, I. Pop, S. Asghar, “Effects of radiation and magnetic field on the mixed convection stagnation–point flow over a vertical stretching sheet in a porous medium”, Int. J. Heat Mass Transf., 53 (2010), 466–474 | DOI | Zbl

[24] M. Turkyilmazoglu, “The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface”, Int. J. Mech. Sci., 77 (2013), 263–268 | DOI

[25] E. M. A. Elbashbeshy, D. A. Aldawody, “Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink”, Comput. Math. Appl., 60 (2010), 2806–2811 | DOI | MR | Zbl

[26] R. Kandasamy, T. Hayat, S. Obaidat, “Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink”, Nuclear Eng. Design, 241 (2011), 2155–2161 | DOI

[27] A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition”, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1064–1068 | DOI

[28] O. D. Makinde, A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Therm. Sci., 50 (2011), 1326–1332 | DOI

[29] S. A. Shehzad, T. Hayat, A. Alsaedi, “Three–dimensional flow of Jeffery fluid with convective surface boundary conditions”, Int. J. Heat Mass Transf., 55 (2012), 3971–3976 | DOI

[30] M. M. Rashidi, N. F. Mehr, A. Hosseini, O. A. Beg, T. K. Hung, “Homotopy simulation of nanofluid dynamics from a nonlinearly stretching isothermal permeable sheet with transpiration”, Meccanica | DOI

[31] Y.P. Liu, S. J. Liao, Z. B. Li, “Symbolic computation of strongly nonlinear periodic oscillations”, J. Symb. Comput., 55 (2013), 72–95 | DOI | MR | Zbl

[32] S. Abbasbandy, M. S. Hashemi, I. Hashim, “On convergence of homotopy analysis method and its application to fractional integro–differential equations”, Quaestiones Math., 36 (2013), 93–105 | DOI | MR | Zbl

[33] L. Zheng, J. Niu, X. Zhang, Y. Gao, “MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump”, Math. Comput. Model., 56 (2012), 133–144 | DOI | MR | Zbl

[34] M. M. Rashidi, S.C. Rajvanshi, M. Keimanesh, “Study of Pulsatile flow in a porous annulus with the homotopy analysis method”, Int. J. Numer. Methods Heat Fluid Flow, 22 (2012), 971–989 | DOI | Zbl

[35] M. Turkyilmazoglu, “Solution of Thomas–Fermi equation with a convergent approach”, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4097–4103 | DOI | MR | Zbl

[36] T. Hayat, M. B. Ashraf, H. H. Alsulami, M. S. Alhuthali, “Three dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions”, Plos One, 9 (2014), e90038 | DOI

[37] H. N. Hassan, M. M. Rashidi, “An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method”, Int. J. Numer. Methods Heat Fluid Flow, 24:2 (2014), 419–437 | DOI | MR | Zbl

[38] T. Hayat, S. A. Shehzad, M. B. Ashraf, A. Alsaedi, “Magnetohydrodynamic mixed convection flow of thixotropic fluid with thermophoresis and Joule heating”, J. Thermophys. Heat Transf., 27 (2013), 733–740 | DOI

[39] T. Hayat, M. B. Ashraf, A. Alsaedi, “Small–time solutions for the thin–film flow of a Casson fluid due to a suddenly moved plate”, J. Aerosp. Eng., 27 (2014), 04014034 | DOI

[40] T. Hayat, M. Farooq, A. Alsaedi, “Melting heat transfer in the stagnation point flow of Maxwell fluid with double–diffusive convection”, Int. J. Numer. Methods Heat Fluid Flow, 24 (2014), 760–774 | DOI | MR | Zbl