Computation of zeros of the alpha exponential function
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 907-920
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              This paper deals with the function $F(\alpha; z)$ of complex variable $z$ defined by the expansion $F(\alpha; z)=\sum_{k=0}^\infty\frac{z^k}{(k!)^\alpha}$ which is a natural generalization of the exponential function (hence the name). Primary attention is given to finding relations concerning the locations of its zeros for $\alpha\in(0, 1)$. Note that the function $F(\alpha; z)$ arises in a number of modern problems in quantum mechanics and optics. For $\alpha=1/2,~1/3,~\dots$, approximations of $F(\alpha; z)$ are constructed using combinations of degenerate hypergeometric functions $_1F_1(a; c; z)$ and their asymptotic expansions as $z\to\infty$. These approximations to $F(\alpha; z)$ are used to approximate the countable set of complex zeros of this function in explicit form, and the resulting approximations are improved by applying Newton’s high-order accurate iterative method. A detailed numerical study reveals that the trajectories of the zeros under a varying parameter $\alpha\in(0, 1]$ have a complex structure. For $\alpha = 1/2$ and $1/3$, the first $30$ complex zeros of the function are calculated to high accuracy.
            
            
            
          
        
      @article{ZVMMF_2017_57_6_a0,
     author = {S. L. Skorokhodov},
     title = {Computation of zeros of the alpha exponential function},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {907--920},
     publisher = {mathdoc},
     volume = {57},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a0/}
}
                      
                      
                    TY - JOUR AU - S. L. Skorokhodov TI - Computation of zeros of the alpha exponential function JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 907 EP - 920 VL - 57 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a0/ LA - ru ID - ZVMMF_2017_57_6_a0 ER -
S. L. Skorokhodov. Computation of zeros of the alpha exponential function. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 907-920. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a0/
