Computation of zeros of the alpha exponential function
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 907-920 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the function $F(\alpha; z)$ of complex variable $z$ defined by the expansion $F(\alpha; z)=\sum_{k=0}^\infty\frac{z^k}{(k!)^\alpha}$ which is a natural generalization of the exponential function (hence the name). Primary attention is given to finding relations concerning the locations of its zeros for $\alpha\in(0, 1)$. Note that the function $F(\alpha; z)$ arises in a number of modern problems in quantum mechanics and optics. For $\alpha=1/2,~1/3,~\dots$, approximations of $F(\alpha; z)$ are constructed using combinations of degenerate hypergeometric functions $_1F_1(a; c; z)$ and their asymptotic expansions as $z\to\infty$. These approximations to $F(\alpha; z)$ are used to approximate the countable set of complex zeros of this function in explicit form, and the resulting approximations are improved by applying Newton’s high-order accurate iterative method. A detailed numerical study reveals that the trajectories of the zeros under a varying parameter $\alpha\in(0, 1]$ have a complex structure. For $\alpha = 1/2$ and $1/3$, the first $30$ complex zeros of the function are calculated to high accuracy.
@article{ZVMMF_2017_57_6_a0,
     author = {S. L. Skorokhodov},
     title = {Computation of zeros of the alpha exponential function},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {907--920},
     year = {2017},
     volume = {57},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a0/}
}
TY  - JOUR
AU  - S. L. Skorokhodov
TI  - Computation of zeros of the alpha exponential function
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 907
EP  - 920
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a0/
LA  - ru
ID  - ZVMMF_2017_57_6_a0
ER  - 
%0 Journal Article
%A S. L. Skorokhodov
%T Computation of zeros of the alpha exponential function
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 907-920
%V 57
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a0/
%G ru
%F ZVMMF_2017_57_6_a0
S. L. Skorokhodov. Computation of zeros of the alpha exponential function. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 6, pp. 907-920. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_6_a0/

[1] Wunsche A., “Realization of SU(1,1) by boson operators with application to phase states”, Acta Phys. Slovaca, 49:4 (1999), 771–782

[2] Hardy G. H., “On the zeros of certain class of integral Taylor series II”, Proc. London Math. Soc., 2:2 (1905), 401–431 | DOI | MR | Zbl

[3] Ostrovskii I. V., “Hardy's generalization of and related analogs of cosine and sine”, Comput. Methods Func. Theory, 6:1 (2006), 1–14 | DOI | MR | Zbl

[4] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973

[6] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 1–2, Nauka, M., 1968

[7] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973