Time-independent reaction-diffusion equation with a discontinuous reactive term
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 854-866 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional singularly perturbed elliptic equation referred to in applications as the reaction-diffusion equation is considered. The nonlinearity describing the reaction is assumed to be discontinuous on a certain closed curve. On the basis of the generalized asymptotic comparison principle, the existence of smooth solution is proven and the accuracy of the asymptotic approximation is estimated.
@article{ZVMMF_2017_57_5_a7,
     author = {N. T. Levashova and N. N. Nefedov and A. O. Orlov},
     title = {Time-independent reaction-diffusion equation with a discontinuous reactive term},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {854--866},
     year = {2017},
     volume = {57},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a7/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - N. N. Nefedov
AU  - A. O. Orlov
TI  - Time-independent reaction-diffusion equation with a discontinuous reactive term
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 854
EP  - 866
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a7/
LA  - ru
ID  - ZVMMF_2017_57_5_a7
ER  - 
%0 Journal Article
%A N. T. Levashova
%A N. N. Nefedov
%A A. O. Orlov
%T Time-independent reaction-diffusion equation with a discontinuous reactive term
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 854-866
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a7/
%G ru
%F ZVMMF_2017_57_5_a7
N. T. Levashova; N. N. Nefedov; A. O. Orlov. Time-independent reaction-diffusion equation with a discontinuous reactive term. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 854-866. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a7/

[1] Orlov A., Levashova N., Burbaev T., “The use of asymptotic methods for modelling of the carriers wave functions in the Si/SiGe heterostructures with quantum-confined layers”, J. Phys.: Conf. Ser., 586 (2015), 012003 | DOI

[2] Levashova N. T., Nikolaeva O. A., Pashkin A. D., “Modelirovanie raspredeleniya temperatury na granitse razdela voda-vozdukh s ispolzovaniem teorii kontrastnykh struktur”, Vestn. Mosk. un-ta. Ser. 3. Fizika. Astronomiya, 2015, no. 5, 12–16

[3] Faif P., Grinli U. M., “Vnutrennie perekhodnye sloi dlya ellipticheskikh kraevykh zadach s malym parametrom”, Uspekhi matem. nauk, 29:4 (1974), 103–131 | Zbl

[4] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. ur-niya, 31:7 (1995), 1132–1139

[5] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851 | Zbl

[6] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Tr. MIAN, 268, 2010, 268–283

[7] Butuzov V. F., Levashova N. T., Melnikova A. A., “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 1983–2003 | Zbl

[8] Butuzov V. F., Levashova N. T., Melnikova A. A., “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 9–29

[9] Nefedov N. N., Davydova M. A., “Kontrastnye struktury v singulyarno vozmuschennykh kvazilineinykh uravneniyakh reaktsiya-diffuziya-advektsiya”, Differents. ur-niya, 49:6 (2013), 715–733 | Zbl

[10] Nefedov N. N., Davydova M. A., “Kontrastnye struktury v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Differents. ur-niya, 48:5 (2012), 738–748 | Zbl

[11] Nefedov N. N., Ni M. K., “Vnutrennie sloi v odnomernom uravnenii reaktsiya diffuziya s razryvnym reaktivnym chlenom”, Zh. vychisl. matem. i matem. fiz., 2015, no. 12, 64–71

[12] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teopii singulyapnykh vozmuschenii, Vyssh. shkola, M., 1990

[13] Vasileva A. B., Plotnikov A. A., “O parabolicheskikh uravneniyakh s malym parametrom”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 799–804

[14] Sattinger D. H., “Monotone methods in elliptic and parabolic boundary value problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1001 | DOI | MR

[15] Pokhozhaev S. I., “Ob uravneniyakh vida $\Delta u=(x, u, Du)$”, Matem. sb., 113:2 (1980), 324–338 | Zbl

[16] Kalitkin N. N., Koryakin P. V., Chislennye metody, uchebnik dlya stud. uchrezhdenii vyssh. prof. obrazovaniya, v 2 kn., v. 2, Metody matematicheskoi fiziki, Izdatelskii tsentr “Akademiya”, M., 2013