Time step selection for the numerical solution of boundary value problems for parabolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 842-853 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm is proposed for selecting a time step for the numerical solution of boundary value problems for parabolic equations. The solution is found by applying unconditionally stable implicit schemes, while the time step is selected using the solution produced by an explicit scheme. Explicit computational formulas are based on truncation error estimation at a new time level. Numerical results for a model parabolic boundary value problem are presented, which demonstrate the performance of the time step selection algorithm.
@article{ZVMMF_2017_57_5_a6,
     author = {P. N. Vabishchevich and A. O. Vasil'ev},
     title = {Time step selection for the numerical solution of boundary value problems for parabolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {842--853},
     year = {2017},
     volume = {57},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a6/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - A. O. Vasil'ev
TI  - Time step selection for the numerical solution of boundary value problems for parabolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 842
EP  - 853
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a6/
LA  - ru
ID  - ZVMMF_2017_57_5_a6
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A A. O. Vasil'ev
%T Time step selection for the numerical solution of boundary value problems for parabolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 842-853
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a6/
%G ru
%F ZVMMF_2017_57_5_a6
P. N. Vabishchevich; A. O. Vasil'ev. Time step selection for the numerical solution of boundary value problems for parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 842-853. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a6/

[1] Knabner P., Angermann L., Numerical methods for elliptic and parabolic partial differential equations, Springer, New York, 2003 | MR | Zbl

[2] Ascher U. M., Numerical methods for evolutionary differential equations, Society for Industrial Mathematics, Philadelphia, 2008 | MR | Zbl

[3] LeVeque R. J., Finite difference methods for ordinary and partial differential equations. Steady-state and timedependent problems, Society for Industrial Mathematics, Philadelphia, 2007 | MR

[4] Samarskii A. A., The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | Zbl

[5] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | MR

[6] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl

[7] Ascher U. M., Computer methods for ordinary differential equations and differential-algebraic equations, Society for Industrial and Applied Mathematics, Philadelphia, 1998 | MR | Zbl

[8] Gear C. W., Numerical initial value problems in ordinary differential equations, Prentice Hall, New York, 1971 | MR | Zbl

[9] Hairer E., Norsett S. P., Wanner G., Solving ordinary differential equations, v. I, Nonstiff problems, Springer, Berlin, 1987 | MR | Zbl

[10] Bangerth W., Rannacher R., Adaptive finite element methods for differential equations, Springer, Basel, 2003 | MR

[11] Moller C. A., Adaptive finite elements in the discretization of parabolic problems, Logos-Verlag, Berlin, 2011 | Zbl

[12] Verfurth R., A posteriori error estimation techniques for finite element methods, Oxford University Press, Oxford, 2013 | MR | Zbl

[13] Vabishchevich P. N., “A priori estimation of a time step for numerically solving parabolic problems”, Mathematical Modelling and Analysis, 20:1 (2015), 94–111 | DOI | MR

[14] Vabishchevich P. N., “Time step for numerically solving parabolic problems”, Finite Difference Methods, Theory and Applications, Springer, New York, 2015, 96–103 | DOI | MR | Zbl

[15] Thomeé V., Galerkin finite element methods for parabolic problems, Springer, Berlin, 2010 | MR