@article{ZVMMF_2017_57_5_a6,
author = {P. N. Vabishchevich and A. O. Vasil'ev},
title = {Time step selection for the numerical solution of boundary value problems for parabolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {842--853},
year = {2017},
volume = {57},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a6/}
}
TY - JOUR AU - P. N. Vabishchevich AU - A. O. Vasil'ev TI - Time step selection for the numerical solution of boundary value problems for parabolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 842 EP - 853 VL - 57 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a6/ LA - ru ID - ZVMMF_2017_57_5_a6 ER -
%0 Journal Article %A P. N. Vabishchevich %A A. O. Vasil'ev %T Time step selection for the numerical solution of boundary value problems for parabolic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 842-853 %V 57 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a6/ %G ru %F ZVMMF_2017_57_5_a6
P. N. Vabishchevich; A. O. Vasil'ev. Time step selection for the numerical solution of boundary value problems for parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 842-853. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a6/
[1] Knabner P., Angermann L., Numerical methods for elliptic and parabolic partial differential equations, Springer, New York, 2003 | MR | Zbl
[2] Ascher U. M., Numerical methods for evolutionary differential equations, Society for Industrial Mathematics, Philadelphia, 2008 | MR | Zbl
[3] LeVeque R. J., Finite difference methods for ordinary and partial differential equations. Steady-state and timedependent problems, Society for Industrial Mathematics, Philadelphia, 2007 | MR
[4] Samarskii A. A., The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | Zbl
[5] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | MR
[6] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl
[7] Ascher U. M., Computer methods for ordinary differential equations and differential-algebraic equations, Society for Industrial and Applied Mathematics, Philadelphia, 1998 | MR | Zbl
[8] Gear C. W., Numerical initial value problems in ordinary differential equations, Prentice Hall, New York, 1971 | MR | Zbl
[9] Hairer E., Norsett S. P., Wanner G., Solving ordinary differential equations, v. I, Nonstiff problems, Springer, Berlin, 1987 | MR | Zbl
[10] Bangerth W., Rannacher R., Adaptive finite element methods for differential equations, Springer, Basel, 2003 | MR
[11] Moller C. A., Adaptive finite elements in the discretization of parabolic problems, Logos-Verlag, Berlin, 2011 | Zbl
[12] Verfurth R., A posteriori error estimation techniques for finite element methods, Oxford University Press, Oxford, 2013 | MR | Zbl
[13] Vabishchevich P. N., “A priori estimation of a time step for numerically solving parabolic problems”, Mathematical Modelling and Analysis, 20:1 (2015), 94–111 | DOI | MR
[14] Vabishchevich P. N., “Time step for numerically solving parabolic problems”, Finite Difference Methods, Theory and Applications, Springer, New York, 2015, 96–103 | DOI | MR | Zbl
[15] Thomeé V., Galerkin finite element methods for parabolic problems, Springer, Berlin, 2010 | MR