Inverse problem of determining the right-hand side in a degenerating parabolic equation with unbounded coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 832-841 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Uniqueness and existence theorems for the solution of the inverse problem for a degenerating parabolic equation with unbounded coefficients on a plane in conditions of integral observations are proven. Estimates of the solution with constants explicitly expresses via the input data of the problem are obtained.
@article{ZVMMF_2017_57_5_a5,
     author = {V. L. Kamynin},
     title = {Inverse problem of determining the right-hand side in a degenerating parabolic equation with unbounded coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {832--841},
     year = {2017},
     volume = {57},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a5/}
}
TY  - JOUR
AU  - V. L. Kamynin
TI  - Inverse problem of determining the right-hand side in a degenerating parabolic equation with unbounded coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 832
EP  - 841
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a5/
LA  - ru
ID  - ZVMMF_2017_57_5_a5
ER  - 
%0 Journal Article
%A V. L. Kamynin
%T Inverse problem of determining the right-hand side in a degenerating parabolic equation with unbounded coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 832-841
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a5/
%G ru
%F ZVMMF_2017_57_5_a5
V. L. Kamynin. Inverse problem of determining the right-hand side in a degenerating parabolic equation with unbounded coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 832-841. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a5/

[1] Kamynin V. L., “O korrektnoi razreshimosti obratnoi zadachi opredeleniya pravoi chasti v vyrozhdayuschemsya parabolicheskom uravnenii s usloviem integralnogo nablyudeniya”, Matem. zametki, 98:5 (2015), 710–724 | DOI | Zbl

[2] Ivanchov M., Saldina N., “An inverse problem for strongly degenerate heat equation”, J. Inverse and Ill-posed Problems, 14:5 (2006), 465–480 | DOI | MR | Zbl

[3] Cannarsa P., Tort J., Yamamoto M., “Determination of source terms in degenerate parabolic equation”, Inverse Problems, 26:10 (2010), 105003 | DOI | MR | Zbl

[4] Deng Z. C., Qian K., Rao X. B., Yang L., “An inverse problem of identifying the source coefficient in degenerate heat equation”, Inverse Problems in Sci. and Engng., 23:3 (2014), 498–517 | DOI | MR

[5] Huzyk N., “Inverse problem of determining the coefficients in degenerate parabolic equation”, Electronic Journal of Differential Equations, 172 (2014), 1–11 | MR

[6] Kawamoto A., “Inverse problems for linear degenerate parabolic equations by “time-like” Carleman estimate”, J. Inverse and Ill-posed Problems, 23:1 (2015), 1–21 | DOI | MR | Zbl

[7] Bouchouev I., Isakov V., “Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets”, Inverse Problems, 15:3 (1999), 95–116 | DOI | MR

[8] Jiang Lishang, Chen Qihong, Wang Lijun, Zhang J. E., “A new well-posed algorithm to recover implied local volatibility”, Quantitative Finance, 3:6 (2003), 451–457 | DOI | MR

[9] Jiang Lishang, Tao Yourshan, “Identifying the volatibility of underlying assets from option prices”, Inverse Problems, 17:1 (2001), 137–155 | DOI | MR | Zbl

[10] Prilepko A. I., Orlovskii D. G., “Ob opredelenii parametra evolyutsionnogo uravneniya i obratnykh zadachakh matematicheskoi fiziki I”, Differents. ur-niya, 21:1 (1985), 119–129 | Zbl

[11] Prilepko A. I., Orlovskii D. G., “Ob opredelenii parametra evolyutsionnogo uravneniya i obratnykh zadachakh matematicheskoi fiziki II”, Differents. ur-niya, 21:4 (1985), 694–700

[12] Cannon J. R., Lin Y., “Determination of a parameter in some quasilinear parabolic differential equations”, Inverse Problems, 4:1 (1988), 35–45 | DOI | MR | Zbl

[13] Cannon J. R., Lin Y., “Determination of a parameter in Holder classes for some semilinear parabolic differential equations”, Inverse Problems, 4:3 (1988), 596–606 | DOI | MR

[14] Kostin A. B., “Obratnaya zadacha dlya uravneniya teploprovodnosti s integralnym pereopredeleniem”, Obratnye zadachi dlya matematicheskogo modelirovaniya fizicheskikh protsessov, Sb. nauchnykh trudov, MIFI, M., 1991, 45–49

[15] Kamynin V. L., Franchini E., “Ob odnoi obratnoi zadache dlya parabolicheskogo uravneniya vysokogo poryadka”, Matem. zametki, 64:5 (1998), 680–691 | DOI | Zbl

[16] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics. Monogr. Textbooks Pure Appl. Math., 231, Marcel Dekker, New York–Basel, 2000 | MR | Zbl

[17] Kruzhkov S. N., “Kvazilineinye parabolicheskie uravneniya i sistemy s dvumya nezavisimymi peremennymi”, Tr. sem. im. I.G. Petrovskogo, 5, 1979, 217–272 | Zbl

[18] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982