The projection Galerkin method for solving the time-independent differential diffusion equation in a semi-infinite domain
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 801-813 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the diffusion equation as an example, results of applying the projection Galerkin method for solving time-independent heat and mass transfer equations in a semi-infinite domain are presented. The convergence of the residual corresponding to the approximate solution of the timeindependent diffusion equation obtained by the projection method using the modified Laguerre functions is proved. Computational results for a two-dimensional toy problem are presented.
@article{ZVMMF_2017_57_5_a3,
     author = {A. M. Makarenkov and E. V. Seregina and M. A. Stepovich},
     title = {The projection {Galerkin} method for solving the time-independent differential diffusion equation in a semi-infinite domain},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {801--813},
     year = {2017},
     volume = {57},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a3/}
}
TY  - JOUR
AU  - A. M. Makarenkov
AU  - E. V. Seregina
AU  - M. A. Stepovich
TI  - The projection Galerkin method for solving the time-independent differential diffusion equation in a semi-infinite domain
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 801
EP  - 813
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a3/
LA  - ru
ID  - ZVMMF_2017_57_5_a3
ER  - 
%0 Journal Article
%A A. M. Makarenkov
%A E. V. Seregina
%A M. A. Stepovich
%T The projection Galerkin method for solving the time-independent differential diffusion equation in a semi-infinite domain
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 801-813
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a3/
%G ru
%F ZVMMF_2017_57_5_a3
A. M. Makarenkov; E. V. Seregina; M. A. Stepovich. The projection Galerkin method for solving the time-independent differential diffusion equation in a semi-infinite domain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 801-813. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a3/

[1] Seregina E. V., Stepovich M. A., Makarenkov A. M., “O modifitsirovannoi proektsionnoi skheme metoda naimenshikh kvadratov dlya modelirovaniya raspredeleniya neosnovnykh nositelei zaryada, generirovannykh elektronnym puchkom v odnorodnom poluprovodnikovom materiale”, Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2013, no. 11, 65–69 | DOI

[2] Seregina E. V., Stepovich M. A., Makarenkov A. M., “Modifitsirovannaya proektsionnaya skhema metoda naimenshikh kvadratov dlya modelirovaniya kontsentratsii neosnovnykh nositelei zaryada v poluprovodnikovykh materialakh”, Uspekhi prikl. fiz., 1:3 (2013), 354–358

[3] Kyser D. F., Wittry D. B., “Spatial distribution of excess carriers in electron-beam excited semiconductors”, Proc. IEEE, 55:3 (1967), 733–734 | DOI

[4] Kanaya K., Okayama S., “Penetration and energy-loss theory of electrons in solid targets”, J. Phys. D, 5:1 (1972), 43–58 | DOI

[5] Mikheev N. N., Nikonorov I. M., Petrov V. I., Stepovich M. A., “Opredelenie elektrofizicheskikh parametrov poluprovodnikov v rastrovom elektronnom mikroskope metodami navedennogo toka i katodolyuminestsentsii”, Izv. AN SSSR. Ser. fiz., 54:2 (1990), 274–280

[6] Mikheev N. N., Petrov V. I., Stepovich M. A., “Kolichestvennyi analiz materialov poluprovodnikovoi optoelektroniki metodami rastrovoi elektronnoi mikroskopii”, Izv. AN SSSR. Ser. fiz., 55:8 (1991), 1474–1482

[7] Mikheev N. N., Stepovich M. A., “Raspredelenie energeticheskikh poter pri vzaimodeistvii elektronnogo zonda s veschestvom”, Zavodskaya laboratoriya. Diagnostika materialov, 62:4 (1996), 20–25

[8] Polyakov A. N., Noltemeyer M., Hempel T., Christen J., Stepovich M. A., “Katodolyuminestsentnye eksperimentalnye issledovaniya transporta eksitonov v nitride galliya”, Izv. RAN. Ser. fiz., 76:9 (2012), 1082–1085

[9] Polyakov A. N., Stepovich M. A., Turtin D. V., “Trekhmernaya diffuziya eksitonov, generirovannykh elektronnym puchkom v poluprovodnikovom materiale: rezultaty matematicheskogo modelirovaniya”, Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2015, no. 12, 48–52 | DOI

[10] Lapin S. V., Egupov N. D., Teoriya matrichnykh operatorov i ee prilozhenie k zadacham avtomaticheskogo upravleniya, MGTU im. N.E. Baumana, M., 1997

[11] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Fizmatlit, M., 2007

[12] Petrov V. I., Samokhvalov A. A., Stepovich M. A. i dr., “Matrichnyi metod resheniya zadachi kollektivnogo dvizheniya neosnovnykh nositelei zaryada, generirovannykh v poluprovodnikovom materiale elektronnym puchkom”, Izv. RAN. Ser. fiz., 66:9 (2002), 1310–1316

[13] Belov A. A., Egupov N. D., Samokhvalov A. A., Stepovich M. A., Tchaikovsky M. M., “Orthogonal-projection method for solving equations of diffusion of minority charge carriers generated by the electron beam in semiconductors”, Proc. SPIE, 5025, 2003, 149–159 | DOI

[14] Abilov V. A., Abilov M. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti dvoinykh ryadov Fure po klassicheskim ortogonalnym mnogochlenam”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 1109–1117 | DOI | Zbl

[15] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969

[16] Laschenov V. K., “Priblizhenie differentsiruemykh funktsii chastnymi summami ryada Fure–Lagerra”, Izv. vyssh. uchebn. zavedenii. Matematika, 1981, no. 1(224), 44–57