Dynamics and variational inequalities
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 783-800
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A terminal control problem with linear dynamics and a boundary condition given implicitly in the form of a solution of a variational inequality is considered. In the general control theory, this problem belongs to the class of stabilization problems. A saddle-point method of the extragradient type is proposed for its solution. The method is proved to converge with respect to all components of the solution, i.e., with respect to controls, phase and adjoint trajectories, and the finite-dimensional variables of the terminal problem.
            
            
            
          
        
      @article{ZVMMF_2017_57_5_a2,
     author = {A. S. Antipin and V. Ja\'cimovi\'c and M. Ja\'cimovi\'c},
     title = {Dynamics and variational inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {783--800},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a2/}
}
                      
                      
                    TY - JOUR AU - A. S. Antipin AU - V. Jaćimović AU - M. Jaćimović TI - Dynamics and variational inequalities JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 783 EP - 800 VL - 57 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a2/ LA - ru ID - ZVMMF_2017_57_5_a2 ER -
A. S. Antipin; V. Jaćimović; M. Jaćimović. Dynamics and variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 783-800. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a2/
