Dynamics and variational inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 783-800 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A terminal control problem with linear dynamics and a boundary condition given implicitly in the form of a solution of a variational inequality is considered. In the general control theory, this problem belongs to the class of stabilization problems. A saddle-point method of the extragradient type is proposed for its solution. The method is proved to converge with respect to all components of the solution, i.e., with respect to controls, phase and adjoint trajectories, and the finite-dimensional variables of the terminal problem.
@article{ZVMMF_2017_57_5_a2,
     author = {A. S. Antipin and V. Ja\'cimovi\'c and M. Ja\'cimovi\'c},
     title = {Dynamics and variational inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {783--800},
     year = {2017},
     volume = {57},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a2/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - V. Jaćimović
AU  - M. Jaćimović
TI  - Dynamics and variational inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 783
EP  - 800
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a2/
LA  - ru
ID  - ZVMMF_2017_57_5_a2
ER  - 
%0 Journal Article
%A A. S. Antipin
%A V. Jaćimović
%A M. Jaćimović
%T Dynamics and variational inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 783-800
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a2/
%G ru
%F ZVMMF_2017_57_5_a2
A. S. Antipin; V. Jaćimović; M. Jaćimović. Dynamics and variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 783-800. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a2/

[1] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2009

[2] Vasilev F. P., Metody optimizatsii, v. 1, 2, MTsNMO, M., 2011

[3] Konnov I. V., Nelineinaya optimizatsiya i variatsionnye neravenstva, Kazanskii un-t, 2013

[4] Antipin A., “Two-person game with Nash equilibrium in optimal control problems”, Optimizat. Let., 6:7 (2012), 1349–1378 | DOI | MR | Zbl

[5] Antipin A. S., Khoroshilova E. V., “Lineinoe programmirovanie i dinamika”, Tr. In-ta Matem. i Mekhan. UrO RAN, 19, no. 2, 2013, 7–25

[6] Antipin A. S., Khoroshilova E. V., “Terminalnoe upravlenie kraevymi zadachami vypuklogo programmirovaniya”, Optimizatsiya i prilozhenie, 3, VTs RAN, M., 2013, 17–55 | Zbl

[7] Antipin A. S., “Terminalnoe upravlenie kraevymi modelyami”, Zh. vychisl. matem. i matem. fiz., 54:2 (2014), 257–285 | DOI | Zbl

[8] Antipin A. S., Khoroshilova E. V., “Optimalnoe upravlenie so svyazannymi nachalnymi i terminalnymi usloviyami”, Tr. In-ta Matem. i Mekhan. UrO RAN, 20, no. 2, 2014, 13–28

[9] Antipin A. S., Khoroshilova E. V., “O kraevoi zadache terminalnogo upravleniya s kvadratichnym kriteriem kachestva”, Izv. Irkutskogo un-ta. Ser. Matem., 8 (2014), 7–28

[10] Antipin A. S., Vasileva O. O., “Dinamicheskii metod mnozhitelei v terminalnom upravlenii”, Zh. vychisl. matem. i matem. fiz., 55:5 (2015), 776–797 | DOI | Zbl

[11] Facchinei F., Pang J.-S., Finite-dimensional variational inequalities and complementarity problems, v. 1, 2, Springer, New York, 2003 | MR

[12] Styuart D. E., Dinamika sistem s neravenstvami, M.–Izhevsk, 2013

[13] Jacimovic Vl., Konatar N., “Directional control of bifurcation into targeted trajectory”, Internat. Bifurcation and Chaos in App. Sci. Eng., 25:11 (2015), 13 | DOI | MR | Zbl

[14] Antipin A. C., Miyailovich N., Yachimovich M., “Nepreryvnyi metod vtorogo poryadka dlya resheniya kvazivariatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1973–1980 | Zbl

[15] Mijajlovic N., Jacimovic M., “A proximal methods for solving quasi-variational inequalities”, Comput. Math. and Math. Phys., 55:12 (2015), 1981–1985 | DOI | MR | Zbl