Upper bound for the length of functions over a finite field in the class of pseudopolynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 899-904

Voir la notice de l'article provenant de la source Math-Net.Ru

An exclusive-OR sum of pseudoproducts (ESPP), or a pseudopolynomial over a finite field is a sum of products of linear functions. The length of an ESPP is defined as the number of its pairwise distinct summands. The length of a function $f$ over this field in the class of ESPPs is the minimum length of an ESPP representing this function. The Shannon length function $L_k^{\text{ESPP}}(n)$ on the set of functions over a finite field of $k$ elements in the class of ESPPs is considered; it is defined as the maximum length of a function of n variables over this field in the class of ESPPs. It is proved that $L_k^{\text{ESPP}}(n)=O(k^n/n^2)$.
@article{ZVMMF_2017_57_5_a12,
     author = {S. N. Selezneva},
     title = {Upper bound for the length of functions over a finite field in the class of pseudopolynomials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {899--904},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/}
}
TY  - JOUR
AU  - S. N. Selezneva
TI  - Upper bound for the length of functions over a finite field in the class of pseudopolynomials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 899
EP  - 904
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/
LA  - ru
ID  - ZVMMF_2017_57_5_a12
ER  - 
%0 Journal Article
%A S. N. Selezneva
%T Upper bound for the length of functions over a finite field in the class of pseudopolynomials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 899-904
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/
%G ru
%F ZVMMF_2017_57_5_a12
S. N. Selezneva. Upper bound for the length of functions over a finite field in the class of pseudopolynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 899-904. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/