@article{ZVMMF_2017_57_5_a12,
author = {S. N. Selezneva},
title = {Upper bound for the length of functions over a finite field in the class of pseudopolynomials},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {899--904},
year = {2017},
volume = {57},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/}
}
TY - JOUR AU - S. N. Selezneva TI - Upper bound for the length of functions over a finite field in the class of pseudopolynomials JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 899 EP - 904 VL - 57 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/ LA - ru ID - ZVMMF_2017_57_5_a12 ER -
%0 Journal Article %A S. N. Selezneva %T Upper bound for the length of functions over a finite field in the class of pseudopolynomials %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 899-904 %V 57 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/ %G ru %F ZVMMF_2017_57_5_a12
S. N. Selezneva. Upper bound for the length of functions over a finite field in the class of pseudopolynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 899-904. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/
[1] Sasao T., Besslich P., “On the complexity of mod-2 sum PLA's”, IEEE Trans. on Comput., 39:2 (1990), 262–266 | DOI
[2] Suprun V. P., “Slozhnost bulevykh funktsii v klasse kanonicheskikh polyarizovannykh polinomov”, Diskretnaya matem., 5:2 (1993), 111–115
[3] Peryazev N. A., “Slozhnost bulevykh funktsii v klasse polinomialnykh polyarizovannykh form”, Algebra i logika, 34:3 (1995), 323–326 | Zbl
[4] Kirichenko K. D., “Verkhnyaya otsenka slozhnosti polinomialnykh normalnykh form bulevykh funktsii”, Diskretnaya matem., 17:3 (2005), 80–88 | DOI | Zbl
[5] Ishikawa R., Hirayama T., Koda G., Shimizu K., “New three-level Boolean expression based on EXOR gates”, IEICE Trans. Inf. Syst., E87-D:5 (2004), 1214–1222
[6] Selezneva S. N., “O dline bulevykh funktsii v klasse polinomialnykh form s affinnymi mnozhitelyami v slagaemykh”, Vestn. Moskovskogo un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2014, no. 2, 34–38
[7] Selezneva S. N., “O slozhnosti predstavleniya funktsii mnogoznachnykh logik polyarizovannymi polinomami”, Diskretnaya matem., 14:2 (2002), 48–53 | DOI | Zbl
[8] Selezneva S. N., “O slozhnosti polyarizovannykh polinomov funktsii mnogoznachnykh logik, zavisyaschikh ot odnoi peremennoi”, Diskretnaya matem., 16:2 (2004), 117–121 | DOI
[9] Zinchenko A. S., Panteleev V. I., “Polinomialnye operatornye predstavleniya $k$-znachnoi logiki”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 13:3 (2006), 13–26
[10] Selezneva S. N., Dainyak A. B., “O slozhnosti obobschennykh polinomov $k$-znachnykh funktsii”, Vestn. Moskovskogo un-ta. Ser. 15. Vychisl. matem. i kibernetika, 3 (2008), 34–39
[11] Selezneva S. N., “O slozhnosti obobschenno-polyarizovannykh polinomov $k$-znachnykh funktsii”, Diskretnaya matem., 21:4 (2009), 20–29 | DOI | Zbl
[12] Markelov N. K., “Nizhnyaya otsenka slozhnosti funktsii trekhznachnoi logiki v klasse polyarizovannykh polinomov”, Vestn. Moskovskogo un-ta. Ser. 15. Vychisl. matem. i kibernetika, 3 (2012), 40–45
[13] Bashov M. A., Selezneva S. N., “O dline funktsii $k$-znachnoi logiki v klasse polinomialnykh normalnykh form po modulyu $k$”, Diskretnaya matem., 26:3 (2014), 3–9 | DOI
[14] Balyuk A. S., “O verkhnei otsenke slozhnosti zadaniya kvazipolinomami funktsii nad konechnymi polyami”, Izvestiya Irkutskogo gos. un-ta. Ser.: Matem., 10 (2014), 3–12
[15] Balyuk A. S., Yanushkovskii G. V., “Verkhnie otsenki slozhnosti funktsii nad konechnymi polyami v klassakh kronekerovykh form”, Izvestiya Irkutskogo gos. un-ta. Ser.: Matem., 14 (2015), 3–17
[16] Yablonskii S. V., Gavrilov G. P., Nabebin A. A., Predpolnye klassy v mnogoznachnykh logikakh, Izd-vo MEI, M., 1997
[17] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2001