Upper bound for the length of functions over a finite field in the class of pseudopolynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 899-904
Voir la notice de l'article provenant de la source Math-Net.Ru
An exclusive-OR sum of pseudoproducts (ESPP), or a pseudopolynomial over a finite field is a sum of products of linear functions. The length of an ESPP is defined as the number of its pairwise distinct summands. The length of a function $f$ over this field in the class of ESPPs is the minimum length of an ESPP representing this function. The Shannon length function $L_k^{\text{ESPP}}(n)$ on the set of functions over a finite field of $k$ elements in the class of ESPPs is considered; it is defined as the maximum length of a function of n variables over this field in the class of ESPPs. It is proved that $L_k^{\text{ESPP}}(n)=O(k^n/n^2)$.
@article{ZVMMF_2017_57_5_a12,
author = {S. N. Selezneva},
title = {Upper bound for the length of functions over a finite field in the class of pseudopolynomials},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {899--904},
publisher = {mathdoc},
volume = {57},
number = {5},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/}
}
TY - JOUR AU - S. N. Selezneva TI - Upper bound for the length of functions over a finite field in the class of pseudopolynomials JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 899 EP - 904 VL - 57 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/ LA - ru ID - ZVMMF_2017_57_5_a12 ER -
%0 Journal Article %A S. N. Selezneva %T Upper bound for the length of functions over a finite field in the class of pseudopolynomials %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 899-904 %V 57 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/ %G ru %F ZVMMF_2017_57_5_a12
S. N. Selezneva. Upper bound for the length of functions over a finite field in the class of pseudopolynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 899-904. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a12/