Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 768-782 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a neoclassical (economic) growth model. A nonlinear Ramsey equation, modeling capital dynamics, in the case of Cobb-Douglas production function is reduced to the linear differential equation via a Bernoulli substitution. This considerably facilitates the search for a solution to the optimal growth problem with logarithmic preferences. The study deals with solving the corresponding infinite horizon optimal control problem. We consider a vector field of the Hamiltonian system in the Pontryagin maximum principle, taking into account control constraints. We prove the existence of two alternative steady states, depending on the constraints. A proposed algorithm for constructing growth trajectories combines methods of open-loop control and closed-loop regulatory control. For some levels of constraints and initial conditions, a closed-form solution is obtained. We also demonstrate the impact of technological change on the economic equilibrium dynamics. Results are supported by computer calculations.
@article{ZVMMF_2017_57_5_a1,
     author = {A. A. Krasovskii and P. D. Lebedev and A. M. Tarasyev},
     title = {Bernoulli substitution in the {Ramsey} model: {Optimal} trajectories under control constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {768--782},
     year = {2017},
     volume = {57},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a1/}
}
TY  - JOUR
AU  - A. A. Krasovskii
AU  - P. D. Lebedev
AU  - A. M. Tarasyev
TI  - Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 768
EP  - 782
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a1/
LA  - ru
ID  - ZVMMF_2017_57_5_a1
ER  - 
%0 Journal Article
%A A. A. Krasovskii
%A P. D. Lebedev
%A A. M. Tarasyev
%T Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 768-782
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a1/
%G ru
%F ZVMMF_2017_57_5_a1
A. A. Krasovskii; P. D. Lebedev; A. M. Tarasyev. Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 768-782. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a1/

[1] Ramsey F. P., “A mathematical theory of saving”, The Economic J., 38:152 (1928), 543–559 | DOI

[2] Acemoglu D., Introduction to modern economic growth, Princeton University Press, 2008

[3] Romer D., Vysshaya makroekonomika, Izdatelskii dom Vysshei shkoly ekonomiki, M., 2014

[4] Moiseev N. N., “K teorii optimalnogo upravleniya na beskonechnom intervale vremeni”, Zh. vychisl. matem. i matem. fiz., 14:4 (1974), 852–861

[5] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, 2-e izd., Nauka, M., 1969

[6] Aseev S. M., Besov K. O., Kryazhimskii A. V., “Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike”, Uspekhi matem. nauk, 67:2(404) (2012), 3–64 | DOI

[7] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257, 2007, 3–271

[8] Malkin I. G., Teoriya ustoichivosti dvizheniya, 2-e izd., Nauka, M., 1966

[9] Maksimov V. I., Osipov Yu. S., “O granichnom upravlenii raspredelennoi sistemoi na beskonechnom promezhutke vremeni”, Zh. vychisl. matem. i matem. fiz., 56:1 (2016), 16–28 | DOI | Zbl

[10] Grass D., Caulkins J. P., Feichtinger G., Tragler G., Behrens D. A., Optimal control of nonlinear processes, Springer, Berlin, 2008 | MR | Zbl

[11] Solow R. M., “Technical change and the aggregate production function”, The Review of Economics and Statistics, 39:3 (1957), 312–320 | DOI | MR

[12] Smith W. T., “A closed form solution to the Ramsey model”, Contrib. Macroecon., 6:1 (2006), 1–27 | DOI | MR

[13] Shell K., Applications of Pontryagin's maximum principle to economics, Math. Systems. Theory and Economics, eds. H. W. Kuhn, G. P. Szego, Springer, Berlin, 1969 | MR

[14] Krasovskii A. A., Tarasev A. M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 262, 2008, 127–145 | Zbl

[15] Kini R. L., Raifa Kh., Prinyatie reshenii pri mnogikh kriteriyakh: predpochteniya i zamescheniya, Radio i svyaz, M., 1981

[16] Krasovskii A. A., Tarasev A. M., “Dinamicheskaya optimizatsiya investitsii v modelyakh ekonomicheskogo rosta”, Avtomat. i telemekhan., 2007, no. 10, 38–52

[17] Krasovskii A. A., Tarasev A. M., “Postroenie nelineinykh regulyatorov v modelyakh ekonomicheskogo rosta”, Tr. IMM UrO RAN, 15, no. 1, 2009, 127–138

[18] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[19] Krasovskii A. A., Tarasyev A. M., Watanabe C., “Optimization of functionality development”, Applied Math. Comput., 217:3 (2010), 1125–1134 | MR | Zbl

[20] Lebedev P. D., Uspenskii A. A., “Protsedury vychisleniya mery nevypuklosti ploskogo mnozhestva”, Zh. vychisl. matem. i matem. fiz., 49:3 (2009), 431–440 | Zbl