On the theory of singular optimal controls in dynamic systems with control delay
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 747-767 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An optimal control problem with a control delay is considered, and a more broad class of singular (in classical sense) controls is investigated. Various sequences of necessary conditions for the optimality of singular controls in recurrent form are obtained. These optimality conditions include analogues of the Kelley, Kopp–Moyer, R. Gabasov, and equality-type conditions. In the proof of the main results, the variation of the control is defined using Legendre polynomials.
@article{ZVMMF_2017_57_5_a0,
     author = {M. D. Mardanov and T. K. Melikov},
     title = {On the theory of singular optimal controls in dynamic systems with control delay},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {747--767},
     year = {2017},
     volume = {57},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a0/}
}
TY  - JOUR
AU  - M. D. Mardanov
AU  - T. K. Melikov
TI  - On the theory of singular optimal controls in dynamic systems with control delay
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 747
EP  - 767
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a0/
LA  - ru
ID  - ZVMMF_2017_57_5_a0
ER  - 
%0 Journal Article
%A M. D. Mardanov
%A T. K. Melikov
%T On the theory of singular optimal controls in dynamic systems with control delay
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 747-767
%V 57
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a0/
%G ru
%F ZVMMF_2017_57_5_a0
M. D. Mardanov; T. K. Melikov. On the theory of singular optimal controls in dynamic systems with control delay. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 5, pp. 747-767. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_5_a0/

[1] Halanay A., “Optimal controls for systems with time lag”, SIAM J. Control, 6:2 (1968), 215–234 | DOI | MR | Zbl

[2] Kharatashvili G. L., Tadumadze T. A., “Nelineinye optimalnye sistemy upravleniya s peremennymi zapazdyvaniyami”, Mat. sb., 107(149):4(12) (1978), 613–633 | Zbl

[3] Tadumadze T. A., Nekotorye voprosy kachestvennoi teorii optimalnogo upravleniya, Izd-vo TTU, Tbilisi, 1983

[4] Mardanov M. Dzh., “Neobkhodimye usloviya optimalnosti v sistemakh s zapazdyvaniem i fazovymi ogranicheniyami”, Matem. zametki, 42:5 (1987), 691–702

[5] Arutyunov A. V., Mardanov M. Dzh., “K teorii printsipa maksimuma v zadachakh s zapazdyvaniyami”, Differents. ur-niya, 25:12 (1989), 2048–2058 | Zbl

[6] Mardanov M. Dzh., Issledovanie optimalnykh protsessov s zapazdyvaniyami pri nalichii ogranichenii, “Elm”, Baku, 2009

[7] Matveev A. S., “Zadachi optimalnogo upravleniya s zapazdyvaniyami obschego vida i fazovymi ogranicheniyami”, Izvestiya AN SSSR. Ser. matem., 52:6 (1988), 1200–1229

[8] Srochko V. A., “K optimalnosti osobykh upravlenii v sistemakh s posledeistviem”, Differents. ur-niya, 12:12 (1976), 2275–2278 | Zbl

[9] Akhmedov K. T., Melikov T. K., Gasanov K. K., “Ob optimalnosti osobykh upravlenii v sistemakh s zapazdyvaniem”, Dokl. AN AzSSR, 31:7 (1975), 7–10

[10] Melikov T. K., Issledovanie osobykh protsessov v nekotorykh optimalnykh sistemakh, Dis. ... kand. fiz.- matem. nauk, Baku, 1976

[11] Aschepkov L. T., Eppel D. S., “Analog usloviya Kelli v optimalnykh sistemakh s zapazdyvaniem”, Differents. ur-niya, 10:4 (1974), 591–597 | Zbl

[12] Mardanov M. Dzh., “Ob usloviyakh optimalnosti osobykh upravlenii”, Dokl. AN SSSR, 253:4 (1980), 815–818 | Zbl

[13] Mansimov K. B., “Mnogotochechnye neobkhodimye usloviya optimalnosti osobykh v klassicheskom smysle upravlenii v sistemakh s zapazdyvaniem”, Differents. ur-niya, 21:3 (1985), 527–530 | Zbl

[14] Mansimov K. B., Osobye upravleniya v sistemakh s zapazdyvaniem, Izd.-vo “Elm”, Baku, 1999

[15] Gasanov K. K., Yusifov B. M., “Induktsionnyi analiz osobykh upravlenii v sistemakh s zapazdyvaniem”, Avtomatika i telemekhan., 1982, no. 6, 37–42

[16] Melikov T. K., “Rekurrentnye usloviya optimalnosti osobykh upravlenii v sistemakh s zapazdyvaniem”, Dokl. RAN, 322:5 (1992), 843–846 | Zbl

[17] Melikov T. K., “Analog usloviya Kelli v optimalnykh sistemakh s posledeistviem neitralnogo tipa”, Zh. vychisl. matem. i matem. fiz., 38:9 (1998), 1490–1499 | Zbl

[18] Melikov T. K., “Ob optimalnosti osobykh upravlenii v sistemakh s posledeistviem neitralnogo tipa”, Zh. vychisl. matem. i matem. fiz., 41:9 (2001), 1332–1343 | Zbl

[19] Melikov T. K., Osobye upravleniya v sistemakh s posledeistviem, Elm, Baku, 2002

[20] Zabello L. E., “Issledovanie osobykh upravlenii v sistemakh s zapazdyvaniem s pomoschyu matrichnykh impulsov”, Differents. ur-niya, 1984, no. 8, 1332–1341 | Zbl

[21] Mardanov M. J., Melikov T. K., “Reccurent optimality conditions of sinqular controls in delay control system”, “PCI 2010” the third intern. Conf. “Problems of cybernetics and informatics” (6–8, september, 2010), 3–5 | MR

[22] Mardanov M. Dzh., “Neobkhodimye usloviya Lezhandra v zadachakh optimizatsii s zapazdyvaniyami v upravleniyakh”, Dokl. AN SSSR, 297:4 (1987), 795–797

[23] Mardanov M. Dzh., “Neobkhodimye usloviya optimalnosti vtorogo poryadka v zadachakh s zapazdyvaniyami v upravleniyakh”, Uspekhi matem. nauk, 43:4(262) (1988), 213–214

[24] Guliev V. Yu., Nekotorye voprosy teorii optimalnogo upravleniya v sistemakh s zapazdyvayuschimi argumentami pri nalichii ogranichenii, Avtoref. diss. kand. ...fiz.-mat. nauk, Baku, 1985

[25] Gabasov R., “K teorii neobkhodimykh uslovii optimalnosti osobykh upravlenii”, Dokl. AN SSSR, 183:2 (1968), 300–302 | Zbl

[26] Kelli G., “Neobkhodimoe uslovie dlya osobykh ekstremalei, osnovannoe na vtoroi variatsii”, Raketnaya tekhnika i kosmonavtika, 1964, no. 8, 26–29

[27] Kelley H. J., Kopp R. E., Moyer H. G., “Singular extremals”, Topics in Optimization, ed. Leitman G., Acad. Press, New York–London, 1967, 63–101 | DOI | MR

[28] Kiseleva M. Yu., Smagin V. I., “Upravlenie s prognoziruyuschei modelyu s uchetom zapazdyvaniya po upravleniyu”, Vestnik TGU. Upravlenie, vychislitelnaya tekhnika i informatika, 2010, no. 2(11), 5–12

[29] Sansone Dzh., Obyknovennye differentsialnye uravneniya, v. 2, IL, M., 1954

[30] Rozonoer L. I., “Printsip maksimuma L. S. Pontryagina v teorii optimalnykh sistem, III”, Avtomatika i telemekhan., 20:12 (1959), 1561–1578

[31] Kopp R., Maier G., “Neobkhodimoe uslovie optimalnosti osobykh ekstremalei”, Raketnaya tekhnika i kosmonavtika, 1965, no. 8, 84–91

[32] Gox B. C., “Necessary conditions for singular extremals involving multiple control bariables”, SIAM J. Control., 4 (1966), 716–731 | DOI | MR | Zbl

[33] Bolonkin A. A., “Spetsialnye ekstremali v zadachakh optimalnogo upravleniya”, Izv. AN SSSR. OTN. Tekhnicheskaya kibernetika, 1969, no. 2, 187–198

[34] Dzhekobcon D. G., “A New necessary condition of optimality for singular control problems”, SIAM J. Control, 7:4 (1969), 578–595 | DOI | MR | Zbl

[35] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973

[36] Agrachev A. A., Gamkrelidze R. V., “Printsip optimalnosti vtorogo poryadka dlya zadachi bystrodeistviya”, Mat. sb., 100(142):4(8) (1976), 610–643 | Zbl

[37] Vapnyarskii I. B., “Teorema suschestvovaniya optimalnogo upravleniya v zadache Boltsa, nekotorye ee primeneniya i neobkhodimye usloviya optimalnosti skolzyaschikh i osobykh rezhimov”, Zh. vychisl. matem. i matem. fiz., 7:2 (1967), 259–283

[38] Srochko V. A., “Metod preobrazovaniya variatsii v teorii osobykh upravlenii”, Differents. i integr. ur-niya, 2, Irkutsk gos. un-t, 1973, 70–80

[39] Srochko V. A., “Issledovanie vtoroi variatsii na osobykh upravleniyakh”, Differents. ur-niya, 10:6 (1974), 1050–1066

[40] Srochko V. A., “Mnogotochechnye usloviya optimalnosti dlya osobykh upravlenii”, Chislennye metody analiza (prikladnaya matematika), SEI SO AN SSSR, Irkutsk, 1976, 43–50

[41] Krener A., “The high order maximal order maximal principle and its application to singular extremals”, SIAM J. Control and Optimization, 15:2 (1977), 256–293 | DOI | MR | Zbl

[42] Kaganovich S. L., “Ob induktsionnom metode issledovanie osobykh ekstremalei”, Avtomatika i telemekhan., 1976, no. 11, 28–39

[43] Gorokhovik V. V., Gorokhovik S. Ya., “Razlichnye formy obobschennykh uslovii Lezhandra–Klebsha”, Avtomatika i telemekhan., 1982, no. 7, 28–33

[44] Barbashina E. E., “Neobkhodimye usloviya tipa Koppa–Moiera dlya sistemy Gursa–Darbu”, Differents. ur-niya, 25:6 (1989), 1045–1047 | Zbl

[45] Melikov T. K., “Rekurrentnye usloviya optimalnosti osobykh upravlenii v sistemakh Gursa–Darbu”, Dokl. AN Azerb. SSR, 14:8 (1990), 6–10

[46] Melikov T. K., “O neobkhodimykh usloviyakh optimalnosti vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 35:7 (1995), 1134–1138 | Zbl

[47] Kudryavtsev A. D., Kurs matematicheskogo analiza, v. 2, Vysshaya shkola, M., 1981