On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 702-709 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A vector problem of electromagnetic wave diffraction by an inhomogeneous volumetric body is considered in the classical formulation. The uniqueness theorem for the solution to the boundary value problem for the system of Maxwell’s equations is proven in the case when the permittivity is real and varies jumpwise on the boundary of the body. A vector integro-differential equation for the electric field is considered. It is shown that the operator of the equation is continuously invertible in the space of square-summable vector functions.
@article{ZVMMF_2017_57_4_a9,
     author = {Yu. G. Smirnov and A. A. Tsupak},
     title = {On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {702--709},
     year = {2017},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a9/}
}
TY  - JOUR
AU  - Yu. G. Smirnov
AU  - A. A. Tsupak
TI  - On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 702
EP  - 709
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a9/
LA  - ru
ID  - ZVMMF_2017_57_4_a9
ER  - 
%0 Journal Article
%A Yu. G. Smirnov
%A A. A. Tsupak
%T On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 702-709
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a9/
%G ru
%F ZVMMF_2017_57_4_a9
Yu. G. Smirnov; A. A. Tsupak. On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 702-709. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a9/

[1] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[2] Nedelec J.-C., Acoustic and electromagnetic equations. Integral representations for harmonic problmes, Springer, New York, 2001 | MR

[3] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[4] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Springer, Berlin, 1992 | MR | Zbl

[5] Samokhin A. B., Integralnye uravneniya i iteratsionnye metody v elektromagnitnom rasseyanii, Radio i svyaz, M., 1998

[6] Costabel M., Darrigrand E., Kone E. H., “Volume and surface integral equations for electromagnetic scattering by a dielectric body”, J. Comput. Appl. Math., 234:6 (2010), 1817–1825 | DOI | MR | Zbl

[7] Kirsch A., “An integral equation approach and the interior transmission problem for Maxwell's equations”, Inverse Problems and Imaging, 1:1 (2007), 107–127 | DOI | MR

[8] Smirnov Yu. G., Tsupak A. A., Valovik D. V., “On the volume singular integro-differential equation approach for the electromagnetic diffraction problem”, Appl. Analys., 2:2, 173–189 | DOI | MR | Zbl

[9] Smirnov Yu. G., “O gladkosti reshenii ob'emnogo singulyarnogo integro-differentsialnogo uravneniya elektricheskogo polya”, Izv. vuzov. Povolzhskii region. Fiz.-matem. nauki, 2015, no. 2, 46–56

[10] Smirnov Yu. G., “Ob ekvivalentnosti elektromagnitnoi zadachi difraktsii na neodnorodnom ogranichennom dielektricheskom tele ob'emnomu singulyarnomu integro-differentsialnomu uravneniyu”, Zh. vychisl. matem. i matem. fiz., 56:9 (2016), 1657–1666 | DOI | Zbl

[11] Mueller C., Foundations of the mathematical theory of electromagnetic waves, Springer, Berlin–New York, 1969 | MR | Zbl

[12] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[13] Stretton Dzh. A., Teoriya elektromagnetizma, OGIZ, M.–L., 1948

[14] Valovik D. V., Smirnov Yu. G., “Metod psevdodifferentsialnykh operatorov v zadache difraktsii elektromagnitnoi volny na dielektricheskom tele”, Differents. ur-niya, 48:4 (2012), 517–523 | Zbl

[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971