@article{ZVMMF_2017_57_4_a9,
author = {Yu. G. Smirnov and A. A. Tsupak},
title = {On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {702--709},
year = {2017},
volume = {57},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a9/}
}
TY - JOUR AU - Yu. G. Smirnov AU - A. A. Tsupak TI - On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 702 EP - 709 VL - 57 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a9/ LA - ru ID - ZVMMF_2017_57_4_a9 ER -
%0 Journal Article %A Yu. G. Smirnov %A A. A. Tsupak %T On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 702-709 %V 57 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a9/ %G ru %F ZVMMF_2017_57_4_a9
Yu. G. Smirnov; A. A. Tsupak. On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 702-709. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a9/
[1] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991
[2] Nedelec J.-C., Acoustic and electromagnetic equations. Integral representations for harmonic problmes, Springer, New York, 2001 | MR
[3] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987
[4] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Springer, Berlin, 1992 | MR | Zbl
[5] Samokhin A. B., Integralnye uravneniya i iteratsionnye metody v elektromagnitnom rasseyanii, Radio i svyaz, M., 1998
[6] Costabel M., Darrigrand E., Kone E. H., “Volume and surface integral equations for electromagnetic scattering by a dielectric body”, J. Comput. Appl. Math., 234:6 (2010), 1817–1825 | DOI | MR | Zbl
[7] Kirsch A., “An integral equation approach and the interior transmission problem for Maxwell's equations”, Inverse Problems and Imaging, 1:1 (2007), 107–127 | DOI | MR
[8] Smirnov Yu. G., Tsupak A. A., Valovik D. V., “On the volume singular integro-differential equation approach for the electromagnetic diffraction problem”, Appl. Analys., 2:2, 173–189 | DOI | MR | Zbl
[9] Smirnov Yu. G., “O gladkosti reshenii ob'emnogo singulyarnogo integro-differentsialnogo uravneniya elektricheskogo polya”, Izv. vuzov. Povolzhskii region. Fiz.-matem. nauki, 2015, no. 2, 46–56
[10] Smirnov Yu. G., “Ob ekvivalentnosti elektromagnitnoi zadachi difraktsii na neodnorodnom ogranichennom dielektricheskom tele ob'emnomu singulyarnomu integro-differentsialnomu uravneniyu”, Zh. vychisl. matem. i matem. fiz., 56:9 (2016), 1657–1666 | DOI | Zbl
[11] Mueller C., Foundations of the mathematical theory of electromagnetic waves, Springer, Berlin–New York, 1969 | MR | Zbl
[12] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[13] Stretton Dzh. A., Teoriya elektromagnetizma, OGIZ, M.–L., 1948
[14] Valovik D. V., Smirnov Yu. G., “Metod psevdodifferentsialnykh operatorov v zadache difraktsii elektromagnitnoi volny na dielektricheskom tele”, Differents. ur-niya, 48:4 (2012), 517–523 | Zbl
[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971