Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 682-701 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, 1-exact vertex-centered finite-volume schemes with an edge-based approximation of fluxes are constructed for numerically solving hyperbolic problems on hybrid unstructured meshes. The 1-exactness property is ensured by introducing a new type of control volumes, which are called semitransparent cells. The features of a parallel algorithm implementing the computations using semitransparent cells on modern supercomputers are described. The results of solving linear and nonlinear test problems are given.
@article{ZVMMF_2017_57_4_a8,
     author = {P. A. Bakhvalov and T. K. Kozubskaya},
     title = {Construction of edge-based 1-exact schemes for solving the {Euler} equations on hybrid unstructured meshes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {682--701},
     year = {2017},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a8/}
}
TY  - JOUR
AU  - P. A. Bakhvalov
AU  - T. K. Kozubskaya
TI  - Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 682
EP  - 701
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a8/
LA  - ru
ID  - ZVMMF_2017_57_4_a8
ER  - 
%0 Journal Article
%A P. A. Bakhvalov
%A T. K. Kozubskaya
%T Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 682-701
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a8/
%G ru
%F ZVMMF_2017_57_4_a8
P. A. Bakhvalov; T. K. Kozubskaya. Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 682-701. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a8/

[1] Jameson A., Baker T. J., Weatherill N. P., Calculation of inviscid transonic flow over a complete aircraft, AIAA Paper, No 86-0103, 1986

[2] Roe P. L., Error estimates for cell-vertex solutions of the compressible Euler equations, ICASE report, No 87-6, 1987

[3] Barth T. J., Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes, AIAA Paper, No 91-0721, 1991

[4] Barth T. J., A 3-D upwind Euler solver for unstructured meshes, AIAA Paper, No 91-1548, 1991

[5] Katz A., Sankaran V., “An efficient correction method to obtain a formally third-order accurate flow solver for node-centered unstructured grids”, J. Sci. Comput., 51 (2012), 375–393 | DOI | MR | Zbl

[6] Work D. C., Katz A. J., 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-0834 (2015)

[7] Bakhvalov P. A., Kozubskaya T. K., “Modifikatsiya skhemy Flux Corrector dlya povysheniya tochnosti resheniya nestatsionarnykh zadach”, Prepr. IPM im. M.V. Keldysha, 2015, 069, 22 pp. | Zbl

[8] Gourvitch N., Roge G., Abalakin I., Dervieux A., Kozubskaya T., A tetrahedral-based superconvergent scheme for aeroacoustics, Research Report INRIA, No 5212, 2004

[9] Debiez C., Dervieux A., Mer K., Nkonga B., “Computation of unsteady flows with mixed finite volume/finite element upwind methods”, Internat. J. for numerical method in fluids, 27 (1998), 193–206 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] Debiez C., Dervieux A., “Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations”, Computers and Fluids, 29:1 (2000), 89–118 | DOI | MR | Zbl

[11] Koobus B., Alauzet F., Dervieux A., Computational fluid dynamics, eds. Magoules F., CRC Press, 2011, 131–204 | DOI | MR

[12] Abalakin I. V., Kozubskaya T. K., “Skhema na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlya resheniya zadach aerodinamiki i aeroakustiki na nestrukturirovannykh setkakh”, Matem. modelirovanie, 25:8 (2013), 109–136 | MR

[13] Bakhvalov P. A., Kozubskaya T. K., “Ekonomichnaya formulirovka skhem s kvaziodnomernoi rekonstruktsiei peremennykh”, Prepr. IPM im. M.V. Keldysha, 2013, 089, 16 pp.

[14] Abalakin I., Bakhvalov P., Kozubskaya T., “Edge-based methods in CAA”, Accurate and efficient aeroacoustic prediction approaches for airframe noise, Lecture Series 2013-03, eds. C. Schram, R. Denos, E. Lecomte, von Karman Institute for Fluid Dynamics, 2013

[15] Abalakin I. V., Bakhvalov P. A., Gorobets A. V., Duben A. P., Kozubskaya T. K., “Parallelnyi programmnyi kompleks NOISEtte dlya krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychisl. metody i programmirovanie, 13 (2012), 110–125

[16] Gorobets A. V., “Parallelnaya tekhnologiya chislennogo modelirovaniya zadach gazovoi dinamiki algoritmami povyshennoi tochnosti”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 641–652 | DOI