Third-order accurate conservative method on unstructured meshes for gasdynamic simulations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 662-681 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A third-order accurate finite-volume method on unstructured meshes is proposed for solving viscous gasdynamic problems. The method is described as applied to the advection equation. The accuracy of the method is verified by computing the evolution of a vortex on meshes of various degrees of detail with variously shaped cells. Additionally, unsteady flows around a cylinder and a symmetric airfoil are computed. The numerical results are presented in the form of plots and tables.
@article{ZVMMF_2017_57_4_a7,
     author = {D. A. Shirobokov},
     title = {Third-order accurate conservative method on unstructured meshes for gasdynamic simulations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {662--681},
     year = {2017},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a7/}
}
TY  - JOUR
AU  - D. A. Shirobokov
TI  - Third-order accurate conservative method on unstructured meshes for gasdynamic simulations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 662
EP  - 681
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a7/
LA  - ru
ID  - ZVMMF_2017_57_4_a7
ER  - 
%0 Journal Article
%A D. A. Shirobokov
%T Third-order accurate conservative method on unstructured meshes for gasdynamic simulations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 662-681
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a7/
%G ru
%F ZVMMF_2017_57_4_a7
D. A. Shirobokov. Third-order accurate conservative method on unstructured meshes for gasdynamic simulations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 662-681. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a7/

[1] Titarev V. A., Tsoutsanis P., Drikakis D., “WENO schemes for mixed-element unstructured meshes”, Commun. Comput. Phys., 8:3 (2010), 585–609 | MR | Zbl

[2] Dumbser M., Kaser M., “Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems”, J. Comput. Phys., 221 (2007), 693–723 | DOI | MR | Zbl

[3] Nejat A., Ollivier-Gooch C., “A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows”, J. Comput. Phys., 227 (2008), 2582–2609 | DOI | MR | Zbl

[4] Dua X., Corre C., Lerat A., “A third-order finite-volume residual-based scheme for the 2D Euler equations on unstructured grids”, J. Comput. Phys., 230 (2011), 4201–4215 | DOI | MR

[5] Shirobokov D. A., “Metod konechnykh ob'emov tretego poryadka tochnosti na treugolnoi setke”, Zh. vychisl. matem. i matem. fiz., 51:10 (2011), 1918–1930 | Zbl

[6] Yee H. C., Sadham N. D., Djomehri M. J., “Low dissipation high order shock-capturing methods using characteristic based filters”, J. Comput. Phys., 150 (1999), 199–238 | DOI | MR | Zbl

[7] Lipavskii M. V., Tolstykh A. I., “Multioperatornye kompaktnye skhemy 5-go i 7-go poryadkov”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1018–1034 | Zbl

[8] Abalkin I. V., Kozubskaya I. V., “Skhema na osnove reberno orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlya resheniya zadach aerodinamiki i aeroakustikina nestrukturirovannnykh setkakh”, Matem. modelirovanie, 24:8 (2013), 109–136 | MR

[9] Proc. of ICASE, LaRC. Workshop on Benchmark Problems in Computational Aeroacoustics (CAA) (May 1995), eds. J.C. Hardin, J.R. Ristorcelli, C.K.W. Tam, NASA Conference Publication, No 3300

[10] Abalkin I. V., Derve A., Kozubskaya I. V., Uvrar Kh., “Metodika povysheniya tochnosti pri modelirovanii perenosa akusticheskikh vozmuschenii na nestrukturirovannykh setkakh”, Uch. zapiski TsAGI, XLI:1 (2010), 110–125

[11] Marsden O., Bogey Ch., Bailly Ch., “High-order curvilinear simulations of flows around non-cartesian bodies”, J. Comput. Acoustics, 13:4 (2005), 731–748 | DOI | Zbl

[12] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987

[13] Tolstykh A. I., Lipavskii M. V., “On performance of methods with third- and fifth-order compact upwind differencing”, J. Comput. Phys., 140 (1998), 205–232 | DOI | MR | Zbl

[14] Tolstykh A. I., High Accuracy non-centered compact difference schemes for fluid dynamics applications, World Scientific, Singapore, 1994

[15] Henderson R. D., “Nonlinear dynamics and pattern formation in turbulent wake transition”, J. Fluid Mech., 352 (1997), 65–112 | DOI | MR | Zbl

[16] Zhang H., Fey U., Noack B. R. et al., “On the transition of the cylinder wake”, Phys. Fluids, 7:4 (1995), 779–794 | DOI

[17] Persillon A., Braza M., “Physical analysis of the transition to turbulence in the wake of a circular cylinder by threedimensional Navier–Stokes simulation”, J. Fluid Mech., 365 (1998), 23–88 | DOI | Zbl

[18] Posdziech O., Grundmann R., “Numerical simulation of the flow around an infinitely long circular cylinder in the transition regime”, Theor. Comput. Fluid Dynamics, 15:2 (2001), 121–141 | DOI | Zbl

[19] Henderson R. D., “Details of the drag curve near the onset of vortex shedding”, Phys. Fluids, 7:9 (1995), 2102 | DOI

[20] Savelev A. D., “Primenenie raznostnykh operatorov vysokogo poryadka pri chislennom modelirovanii zadach aerodinamiki”, Matem. modelirovanie, 24:4 (2012), 80–94 | Zbl