Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 710-729
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier–Stokes equations of a viscous compressible heat-conducting gas.
            
            
            
          
        
      @article{ZVMMF_2017_57_4_a10,
     author = {A. A. Zlotnik},
     title = {Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {710--729},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a10/}
}
                      
                      
                    TY - JOUR AU - A. A. Zlotnik TI - Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 710 EP - 729 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a10/ LA - ru ID - ZVMMF_2017_57_4_a10 ER -
%0 Journal Article %A A. A. Zlotnik %T Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 710-729 %V 57 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a10/ %G ru %F ZVMMF_2017_57_4_a10
A. A. Zlotnik. Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 710-729. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a10/
