On the length preserving approximation of plane curves by circular arcs
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 588-604
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A technique for the length preserving approximation of plane curves by two circular arcs is analyzed. The conditions under which this technique can be applied are extended, and certain consequences of the proved results unrelated to the approximation problem are discussed. More precisely, inequalities for the length of a convex spiral arc subject to the given boundary conditions are obtained. Conjectures on curve closeness conditions obtained using computer simulation are discussed.
            
            
            
          
        
      @article{ZVMMF_2017_57_4_a1,
     author = {A. I. Kurnosenko},
     title = {On the length preserving approximation of plane curves by circular arcs},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {588--604},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a1/}
}
                      
                      
                    TY - JOUR AU - A. I. Kurnosenko TI - On the length preserving approximation of plane curves by circular arcs JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 588 EP - 604 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a1/ LA - ru ID - ZVMMF_2017_57_4_a1 ER -
A. I. Kurnosenko. On the length preserving approximation of plane curves by circular arcs. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 588-604. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a1/
