Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 555-587
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The Appell function $F_1$ (i.e., a generalized hypergeometric function of two complex variables) and a corresponding system of partial differential equations are considered in the logarithmic case when the parameters of $F_1$ are related in a special way. Formulas for the analytic continuation of $F_1$ beyond the unit bicircle are constructed in which $F_1$ is determined by a double hypergeometric series. For the indicated system of equations, a collection of canonical solutions are presented that are two-dimensional analogues of Kummer solutions well known in the theory of the classical Gauss hypergeometric equation. In the logarithmic case, the canonical solutions are written as generalized hypergeometric series of new form. The continuation formulas are derived using representations of $F_1$ in the form of Barnes contour integrals. The resulting formulas make it possible to efficiently calculate the Appell function in the entire range of its variables. The results of this work find a number of applications, including the problem of parameters of the Schwarz–Christoffel integral.
            
            
            
          
        
      @article{ZVMMF_2017_57_4_a0,
     author = {S. I. Bezrodnykh},
     title = {Analytic continuation of the {Appell} function $F_1$ and integration of the associated system of equations in the logarithmic case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {555--587},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a0/}
}
                      
                      
                    TY - JOUR AU - S. I. Bezrodnykh TI - Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 555 EP - 587 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a0/ LA - ru ID - ZVMMF_2017_57_4_a0 ER -
%0 Journal Article %A S. I. Bezrodnykh %T Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 555-587 %V 57 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a0/ %G ru %F ZVMMF_2017_57_4_a0
S. I. Bezrodnykh. Analytic continuation of the Appell function $F_1$ and integration of the associated system of equations in the logarithmic case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 4, pp. 555-587. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_4_a0/
