@article{ZVMMF_2017_57_3_a9,
author = {A. A. Arkhipova},
title = {Regularity of solutions of the model {Venttsel'} problem for quasilinear parabolic systems with nonsmooth in time principal matrices},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {470--490},
year = {2017},
volume = {57},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a9/}
}
TY - JOUR AU - A. A. Arkhipova TI - Regularity of solutions of the model Venttsel' problem for quasilinear parabolic systems with nonsmooth in time principal matrices JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 470 EP - 490 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a9/ LA - ru ID - ZVMMF_2017_57_3_a9 ER -
%0 Journal Article %A A. A. Arkhipova %T Regularity of solutions of the model Venttsel' problem for quasilinear parabolic systems with nonsmooth in time principal matrices %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 470-490 %V 57 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a9/ %G ru %F ZVMMF_2017_57_3_a9
A. A. Arkhipova. Regularity of solutions of the model Venttsel' problem for quasilinear parabolic systems with nonsmooth in time principal matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 470-490. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a9/
[1] Arkhipova A. A., “Regularity of weak solutions to the model Venttsel problem for linear parabolic systems with nonsmooth in time principal matrix: $A(t)$-caloric approximation method”, Manuscripta Math., 151:3 (2016), 519–548 | DOI | MR | Zbl
[2] Ventsel A. D., “On the boundary conditions for multi-dimensional diffusion process”, Teor. Veroyat. Prim., 4:2 (1954), 172–185 (in Russian) | MR
[3] Luo Y., Trudinger N. S., “Quasilinear second order elliptic equations with Venttsel's boundary conditions”, Potential Analys., 3 (1994), 219–243 | DOI | MR | Zbl
[4] Apushkinskaya D. E., Nazarov A. I., “A Survey of results on nonlinear Venttsel problems”, Applications of Mathematics, 45:1 (2000), 69–80 | DOI | MR | Zbl
[5] Arkhipova A. A., Lukina A. A., “Otsenka reshenii modelnoi zadachi Venttselya v prostranstvakh Kampanato”, Probl. matem. analiza, 28 (2013), 47–56
[6] Arkhipova A. A., Lukina A. A., “Regulyarnost obobschennykh reshenii modelnoi zadachi Venttselya dlya lineinykh divergentnykh ellipticheskikh operatorov v prostranstvakh Kampanato”, Probl. matem. analiza, 72 (2013), 39–50
[7] Arkhipova A. A., “Chastichnaya regulyarnost obobschennykh reshenii modelnoi zadachi Venttselya dlya kvazilineinykh ellipticheskikh sistem uravnenii”, Probl. matem. analiza, 75 (2014), 3–20
[8] Giaquinta M., Giusti E., “Partial regularity for solutions to nonlinear parabolic systems”, Ann. Mat. Pura Appl., 97 (1973), 253–261 | DOI | MR
[9] Campanato S., “Partial Hölder continuity of solutions of quasilinear parabolic systems of second order with linear growth”, Rend. Sem. Mat. Univ. Padova, 64 (1981), 59–75 | MR | Zbl
[10] Campanato S., “On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions”, Ann. Mat. Pure and Appl. (IV), 137 (1984), 83–122 | DOI | MR | Zbl
[11] Giaquinta M., Martinazzi L., An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Scuola Norm. Super., Pisa, 2012 | MR | Zbl
[12] Giaquinta M., “A counter-example to the boundary regularity of solutions to elliptic quasilinear systems”, Manuscripta Math., 26 (1978), 217–220 | DOI | MR
[13] Duzaar F., Grotowski J. F., “Optimal interior partial regularity for nonlinear elliptic systems; the method of A-harmonic approximation”, Manuscripta Math., 103 (2000), 267–298 | DOI | MR | Zbl
[14] Arkhipova A. A., “Chastichnaya regulyarnost reshenii modelnoi zadachi Venttselya dlya kvazilineinykh ellipticheskikh sistem s kvadratichnoi nelineinostyu po gradientu”, Probl. matem. analiza, 82 (2015), 15–30 | Zbl
[15] Duzaar F., Mingione G., “Second order parabolic systems, optimal regularity and singular sets of solutions”, Ann. Instit. H. Poincaré, Anal. Nonlinear., 22 (2005), 711–751 | MR
[16] Bögelein V., Duzaar F., Mingione G., “The boundary regularity of non-linear parabolic systems. I”, Ann. Inst. H. Poincaré, Anal. non Linearire, 27 (2010), 201–255 | DOI | MR | Zbl
[17] Arkhipova A. A., Stara J., John O., “Partial regularity for solutions of quasilinear parabolic systems with nonsmooth in time principal matrix”, Nonlinear Analysis, 95 (2014), 421–435 | DOI | MR | Zbl
[18] Arkhipova A. A., Stara J., “Boudary partial regulatiry for solutions of quasilinear parabolic systems with nonsmooth in time principal matrix”, Nonlinear Analysis, 120 (2015), 236–261 | DOI | MR | Zbl
[19] Krylov N. V., “Parabolic and elliptic equations with VMO coefficients”, Commun. Partial Differ. Equ., 32:1–3 (2007), 453–475 | DOI | MR | Zbl
[20] Krylov N. V., Lectures on elliptic and parabolic equations in sobolev space, Amer. Math. Soc., Providence, 2008 | MR
[21] Dong H., Krylov N. V., Li Xu, “On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains”, Algebra and Analyzis, 24:1 (2012), 53–93 | MR
[22] Dong H., Kim D., “Parabolic and elliptic systems with VMO coefficients”, Methods Appl. Math., 16:3 (2009), 365–388 | MR | Zbl
[23] Dong H., Kom D., “On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients”, Arch. Rat. Mech. Anal., 199 (2011), 889–941 | DOI | MR | Zbl
[24] Dong H., Kim D., “Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth”, Communic. in PDE, 36 (2011), 1750–1777 | DOI | MR | Zbl
[25] Campanato S., “Equazioni paraboliche del second ordine e spazi $L^{2,\theta}(\Omega,\delta)$”, Ann. Mat. Pura Appl., 137:4 (1966), 55–102 | DOI | MR
[26] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967