On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 429-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a certain class of anisotropic elliptic equations with the right-hand side from $L_1$ in an arbitrary unbounded domains, the Dirichlet problem with an inhomogeneous boundary condition is considered. The existence and uniqueness of the entropy solution in anisotropic Sobolev–Orlicz spaces are proven.
@article{ZVMMF_2017_57_3_a6,
     author = {L. M. Kozhevnikova},
     title = {On the entropy solution to an elliptic problem in anisotropic {Sobolev{\textendash}Orlicz} spaces},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {429--447},
     year = {2017},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a6/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 429
EP  - 447
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a6/
LA  - ru
ID  - ZVMMF_2017_57_3_a6
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 429-447
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a6/
%G ru
%F ZVMMF_2017_57_3_a6
L. M. Kozhevnikova. On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 429-447. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a6/

[1] Brezis H., “Semilinear equations in $R^N$ without condition at infnity”, Appl. Math. Optim., 12:3 (1984), 271–282 | DOI | MR | Zbl

[2] Boccardo L., Gallouet T., Vazquez J. L., “Nonlinear elliptic equaitons in $R^N$ without growth restrictions on the data”, J. Differential Equations, 105:2 (1993), 334–363 | DOI | MR | Zbl

[3] Bendahmane M., Karlsen K., “Nonlinear anisotropic elliptic and parabolic equations in $R^N$ with advection and lower order terms and locally integrable data”, Potential Analysis, 22:3 (2005), 207–227 | DOI | MR | Zbl

[4] Boccardo L., Gallouet Th., “Nonlinear elliptic equations with right-hand side measures”, Comm. Partial Differential Equations, 17:3–4 (1992), 641–655 | MR | Zbl

[5] Boccardo L., Gallouet Th., Marcellini P., “Anisotropic equations in $L^1$”, Differential Integral Equations, 9:1 (1996), 209–212 | MR | Zbl

[6] Benilan Ph., Boccardo L., Galluet Th., Pierre M., Vazquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 22:2 (1995), 241–273 | MR | Zbl

[7] Boccardo L., “Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form”, Pitman Res. Notes Math. Ser., 350, 1996, 43–57 | MR | Zbl

[8] Kovalevskii A. A., “Apriornye svoistva reshenii nelineinykh uravnenii s vyrozhdayuscheisya koertsitivnostyu i $L^1$-dannymi”, Sovremennaya matem. Fundamentalnye napravl., 16, 2006, 47–67

[9] Benkirane A., Bennouna J., “Existence of entropy solutions for some elliptic problems involving derivatives of nonlinear terms in Orlicz spaces”, Abstr. Appl. Anal., 7:2 (2002), 85–102 | DOI | MR | Zbl

[10] Aharouch L., Bennouna J., Touzani A., “Existence of renormalized solution of some elliptic problems in Orlicz spaces”, Rev. Mat. Complut., 22:1 (2009), 91–110 | DOI | MR | Zbl

[11] Gwiazda P., Wittbold P., Wróblewska A., Zimmermann A., Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, PhD programme: Mathematical methods in natural sciences (MMNS). Preprint No 2011-013, 2011 | MR

[12] Rutitskii Ya. B., Krasnoselskii M. A., Vypuklye funktsii i prostranstva Orlicha, Fizmatlit, M., 1958

[13] Korolev A. G., “Teoremy vlozheniya anizotropnykh prostranstv Soboleva–Orlicha”, Vestn. Mosk. univ. Ser. 1, 1983, no. 1, 32–37

[14] Gossez J. P., “Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients”, Trans. Amer. Math. Soc., 190 (1974), 163–206 | DOI | MR

[15] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[16] Kozhevnikova L. M., Khadzhi A. A., “Suschestvovanie reshenii anizotropnykh ellipticheskikh uravnenii s nestepennymi nelineinostyami v neogranichennykh oblastyakh”, Matem. sb., 206:8 (2015), 99–126 | DOI | Zbl

[17] Kozhevnikova L. M., Khadzhi A. A., “O resheniyakh ellipticheskikh uravnenii s nestepennymi nelineinostyami v neogranichennykh oblastyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 19 (2015), 44–62 | DOI