On a nonlinear nonlocal problem of elliptic type
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 417-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability of a nonlinear nonlocal problem of the elliptic type that is a generalized Bitsadze–Samarskii-type problem is analyzed. Theorems on sufficient solvability conditions are stated. In particular, a nonlocal boundary value problem with $p$-Laplacian is studied. The results are illustrated by examples considered earlier in the linear theory (for $p=2$). The examples show that, in contrast to the linear case under the same “nice” nonlocal boundary conditions, for $p>2$, the problem can have one or several solutions, depending on the right-hand side.
@article{ZVMMF_2017_57_3_a5,
     author = {O. V. Solonukha},
     title = {On a nonlinear nonlocal problem of elliptic type},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {417--428},
     year = {2017},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a5/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - On a nonlinear nonlocal problem of elliptic type
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 417
EP  - 428
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a5/
LA  - ru
ID  - ZVMMF_2017_57_3_a5
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T On a nonlinear nonlocal problem of elliptic type
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 417-428
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a5/
%G ru
%F ZVMMF_2017_57_3_a5
O. V. Solonukha. On a nonlinear nonlocal problem of elliptic type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 417-428. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a5/

[1] Carleman T., “Sur la theorie des equations integrales et ses applications”, Verhandlungen des Internat. Math. Kongr., Zürich, 1932, no. 1, 138–151 | MR

[2] Vishik M. I., “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. MMO, 1, 1952, 187–264

[3] Browder F. E., “Non-local elliptic boundary value problems”, Amer. J. Math., 1964, no. 4, 735–750 | DOI | MR | Zbl

[4] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl

[5] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differents. ur-niya, 16:1 (1980), 1925–1935

[6] Skubachevskii A. L., “Nelokalnye ellipticheskie zadachi s parametrom”, Matem. cbornik, 121:6 (1983), 201–210

[7] Skubachevskii A. L., “Ellipticheskie zadachi s nelokalnymi usloviyami vblizi granitsy”, Matem. cbornik, 129:2 (1986), 279–302

[8] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Berlin, 1997 | MR | Zbl

[9] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. I”, Sovr. matem. Fundamentalnye napravleniya, 26, Izd-vo RUDN, M., 2007

[10] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. II”, Sovr. matem. Fundamentalnye napravleniya, 33, Izd-vo RUDN, M., 2009

[11] Solonukha O. V., “Ob odnom klasse suschestvenno nelineinykh ellipticheskikh differentsialno-raznostnykh uravnenii”, Tr. MIAN, 283, 2013, 226–244 | Zbl

[12] Solonukha O. V., “On nonlinear and quasilinear elliptic functional-differential equations”, Discrete and Continuous Dynamic Systems. Seria S, 9:3 (2016), 847–868 | DOI | MR