On a nonlinear nonlocal problem of elliptic type
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 417-428
Voir la notice de l'article provenant de la source Math-Net.Ru
The solvability of a nonlinear nonlocal problem of the elliptic type that is a generalized Bitsadze–Samarskii-type problem is analyzed. Theorems on sufficient solvability conditions are stated. In particular, a nonlocal boundary value problem with $p$-Laplacian is studied. The results are illustrated by examples considered earlier in the linear theory (for $p=2$). The examples show that, in contrast to the linear case under the same “nice” nonlocal boundary conditions, for $p>2$, the problem can have one or several solutions, depending on the right-hand side.
@article{ZVMMF_2017_57_3_a5,
author = {O. V. Solonukha},
title = {On a nonlinear nonlocal problem of elliptic type},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {417--428},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a5/}
}
O. V. Solonukha. On a nonlinear nonlocal problem of elliptic type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 417-428. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a5/