Rotationally symmetric viscous gas flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 382-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet boundary value problem for the Navier–Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval $(\gamma^*, \infty)$ with a critical exponent $\gamma^*< 4/3$ is proved.
@article{ZVMMF_2017_57_3_a2,
     author = {W. Weigant and P. I. Plotnikov},
     title = {Rotationally symmetric viscous gas flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {382--395},
     year = {2017},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/}
}
TY  - JOUR
AU  - W. Weigant
AU  - P. I. Plotnikov
TI  - Rotationally symmetric viscous gas flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 382
EP  - 395
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/
LA  - ru
ID  - ZVMMF_2017_57_3_a2
ER  - 
%0 Journal Article
%A W. Weigant
%A P. I. Plotnikov
%T Rotationally symmetric viscous gas flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 382-395
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/
%G ru
%F ZVMMF_2017_57_3_a2
W. Weigant; P. I. Plotnikov. Rotationally symmetric viscous gas flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 382-395. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/

[1] Lions P. L., Mathematical topics in fluid dynamics, v. 2, Compressible models, Clarendon Press, Oxford, 1998 | MR

[2] Feireisl E., Novotný A., Petzeltova H., “On the existence of globally defined weak solutions to the Navier–Stokes equations of compressible isentropic fluids”, J. Mathematical Fluid Mechanics, 3:3 (2001), 358–392 | DOI | MR | Zbl

[3] Feireisl E., Dynamics of viscous compressible fluids, Oxford University Press, Oxford, 2004 | MR | Zbl

[4] Novotný A., Straškraba I., Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Math. and its Appl., 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[5] Plotnikov P. I., Sokolowski J., Compressible Navier–Stokes equations. Theory and shape optimization, Birkhauser, Basel, 2012 | MR

[6] Jiang S., Zhang P., “On spherically symmetric solutions of the compressible isentropic Navier–Stokes equations”, Comm. Math. Phys., 215 (2001), 559–581 | DOI | MR | Zbl

[7] Ducomet B., Nečasová S., Vasseur A., “On spherically symmetric motions motions of a viscous compressible barotropic and selfgravitating gas”, J. Math. Fluid. Mech., 99 (2009), 1–24 | MR

[8] Jiang S., Zhang P., “Axisymmetric solutions to the 3D Navier–Stokes equations for compressible isentropic fluids”, J. Math. Pures Appl., 82 (2003), 949–973 | DOI | MR | Zbl

[9] Sun W., Jiang S., Guo Z., “Helically symmetric solutions to the 3D Navier–Stokes equations for compressible isentropic fluids”, J. Differential Equations, 222 (2006), 263–296 | DOI | MR | Zbl

[10] Adams R. A., Sobolev spaces, Academic press, New-York, 1975 | MR | Zbl