Rotationally symmetric viscous gas flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 382-395

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet boundary value problem for the Navier–Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval $(\gamma^*, \infty)$ with a critical exponent $\gamma^* 4/3$ is proved.
@article{ZVMMF_2017_57_3_a2,
     author = {W. Weigant and P. I. Plotnikov},
     title = {Rotationally symmetric viscous gas flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {382--395},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/}
}
TY  - JOUR
AU  - W. Weigant
AU  - P. I. Plotnikov
TI  - Rotationally symmetric viscous gas flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 382
EP  - 395
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/
LA  - ru
ID  - ZVMMF_2017_57_3_a2
ER  - 
%0 Journal Article
%A W. Weigant
%A P. I. Plotnikov
%T Rotationally symmetric viscous gas flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 382-395
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/
%G ru
%F ZVMMF_2017_57_3_a2
W. Weigant; P. I. Plotnikov. Rotationally symmetric viscous gas flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 382-395. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/