Rotationally symmetric viscous gas flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 382-395
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dirichlet boundary value problem for the Navier–Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval $(\gamma^*, \infty)$ with a critical exponent $\gamma^* 4/3$ is proved.
@article{ZVMMF_2017_57_3_a2,
author = {W. Weigant and P. I. Plotnikov},
title = {Rotationally symmetric viscous gas flows},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {382--395},
publisher = {mathdoc},
volume = {57},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/}
}
TY - JOUR AU - W. Weigant AU - P. I. Plotnikov TI - Rotationally symmetric viscous gas flows JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 382 EP - 395 VL - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/ LA - ru ID - ZVMMF_2017_57_3_a2 ER -
W. Weigant; P. I. Plotnikov. Rotationally symmetric viscous gas flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 382-395. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a2/