Classical solutions of the Vlasov–Poisson equations with external magnetic field in a half-space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 536-552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the first mixed problem for the Vlasov–Poisson equations with an external magnetic field in a half-space. This problem describes the evolution of the density distributions of ions and electrons in a high temperature plasma with a fixed potential of electric field on a boundary. For arbitrary potential of electric field and sufficiently large induction of external magnetic field, it is shown that the characteristics of the Vlasov equations do not reach the boundary of the halfspace. It is proved the existence and uniqueness of classical solution with the supports of charged-particle density distributions at some distance from the boundary, if initial density distributions are sufficiently small.
@article{ZVMMF_2017_57_3_a12,
     author = {A. L. Skubachevskii and Y. Tsuzuki},
     title = {Classical solutions of the {Vlasov{\textendash}Poisson} equations with external magnetic field in a half-space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {536--552},
     year = {2017},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a12/}
}
TY  - JOUR
AU  - A. L. Skubachevskii
AU  - Y. Tsuzuki
TI  - Classical solutions of the Vlasov–Poisson equations with external magnetic field in a half-space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 536
EP  - 552
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a12/
LA  - ru
ID  - ZVMMF_2017_57_3_a12
ER  - 
%0 Journal Article
%A A. L. Skubachevskii
%A Y. Tsuzuki
%T Classical solutions of the Vlasov–Poisson equations with external magnetic field in a half-space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 536-552
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a12/
%G ru
%F ZVMMF_2017_57_3_a12
A. L. Skubachevskii; Y. Tsuzuki. Classical solutions of the Vlasov–Poisson equations with external magnetic field in a half-space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 536-552. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a12/

[1] Vlasov A. A., “O vibratsionnykh svoistvakh elektronnogo gaza”, Zh. eksperim. i teor. fiz., 8:3 (1938), 291–318 | Zbl

[2] Landau L. D., “O kolebaniyakh v elektronnoi plazme”, Zh. eksperim. i teor. fiz., 16 (1946), 574–586 | Zbl

[3] Miyamoto K., Osnovy fiziki plazmy i upravlyaemogo sinteza, Fizmatlit, M., 2007

[4] Braun W., Hepp K., “The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR | Zbl

[5] Maslov V. P., “Uravneniya samosoglasovannogo polya”, Itogi nauki i tekhniki. Ser. Sovrem. probl. matem., 11, VINITI, M., 1978, 153–234 | Zbl

[6] Dobrushin R. L., “Uravneniya Vlasova”, Funkts. analiz i ego pril., 13:2 (1979), 48–58 | Zbl

[7] Arsenev A. A., “Suschestvovanie v tselom slabogo resheniya sistemy uravnenii Vlasova”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 136–147 | Zbl

[8] DiPerna R., Lions P. L., “Solutions globales d'équations du type Vlasov–Poisson”, C. R. Acad. Sci. Paris Ser. I Math., 307:12 (1988), 655–658 | MR | Zbl

[9] DiPerna R. J., Lions P. L., “Global weak solutions of Vlasov–Maxwell systems”, Comm. Pure Appl. Math., 42:6 (1989), 729–757 | DOI | MR | Zbl

[10] Horst E., Hunze R., “Weak solutions of the initial value problem for the unmodified non-linear Vlasov equation”, Math. Methods Appl. Sci., 6:1 (1984), 262–279 | DOI | MR | Zbl

[11] Kozlov V. V., “Obobschennoe kineticheskoe uravnenie Vlasova”, Uspekhi matem. nauk, 63:4(382) (2008), 93–130 | DOI | Zbl

[12] Kozlov V. V., “The Vlasov kinetic equation, dynamics of continuum and turbulence”, Regul. Chaotic Dyn., 16:6 (2011), 602–622 | DOI | MR | Zbl

[13] Arsenev A. A., “Suschestvovanie i edinstvennost klassicheskogo resheniya sistemy uravnenii Vlasova”, Zh. vychisl. matem. i matem. fiz., 15:5 (1975), 1344–1349 | Zbl

[14] Bardos C., Degond P., “Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2:2 (1985), 101–118 | DOI | MR | Zbl

[15] Batt J., “Ein Existenzbeweis fur die Vlasov–Gleichung der Stellardynamik bei gemittelter Dichte”, Arch. Ration. Mech. Anal., 13 (1963), 296–308 | DOI | MR | Zbl

[16] Batt J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differential Equations, 25:3 (1977), 342–364 | DOI | MR | Zbl

[17] Horst E., “On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation. I. General theory”, Math. Methods Appl. Sci., 3:1 (1981), 229–248 | DOI | MR | Zbl

[18] Pfaffelmoser K., “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Differential Equations, 95:2 (1992), 281–303 | DOI | MR | Zbl

[19] Rein G., “Growth estimates for the solutions of the Vlasov–Poisson system in the plasma physics case”, Math. Nachr., 191:1 (1998), 269–278 | DOI | MR | Zbl

[20] Schaffer J., “Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions”, Comm. Partial Differential Equations, 16:8–9 (1991), 1313–1335 | DOI | MR

[21] Lions P. L., Perthame B., “Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system”, Invent. Math., 105:1 (1991), 415–430 | DOI | MR | Zbl

[22] Maslov V. P., Fedoryuk M. V., “Lineinaya teoriya zatukhaniya Landau”, Matem. sb., 127(169):4(8) (1985), 445–475 | Zbl

[23] Mouhot C., Villani C., “On Landau damping”, Acta Math., 207:1 (2011), 29–201 | DOI | MR | Zbl

[24] Arsenev A. A., “O suschestvovanii obobschennykh i statsionarnykh statisticheskikh reshenii sistemy uravnenii Vlasova v ogranichennoi oblasti”, Differents. ur-niya, 15:7 (1979), 1253–1266 | Zbl

[25] Weckler J., “On the initial-boundary-value problem for the Vlasov–Poisson system: existence of weak solutions and stability”, Arch. Ration. Mech. Anal., 130:2 (1995), 145–161 | DOI | MR | Zbl

[26] Guo Y., “Regularity for the Vlasov equations in a half space”, Indiana Univ. Math. J., 43:1 (1994), 255–320 | DOI | MR | Zbl

[27] Hwang H. J., Velazquez J. J. L., “On global existence for the Vlasov–Poisson system in a half space”, J. Differential Equations, 247:6 (2009), 1915–1948 | DOI | MR | Zbl

[28] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differents. ur-niya, 16:11 (1980), 1925–1935

[29] Skovoroda A. A., Magnitnye lovushki dlya uderzhaniya plazmy, Fizmatlit, M., 2009

[30] Skubachevskii A. L., “Ob odnoznachnoi razreshimosti smeshannykh zadach dlya sistemy uravnenii Vlasova–Puassona v poluprostranstve”, Dokl. AN, 443:4 (2012), 431–434 | Zbl

[31] Skubachevskii A. L., “Smeshannye zadachi dlya uravnenii Vlasova–Puassona v poluprostranstve”, Teoriya funktsii i uravneniya matematicheskoi fiziki, Sb. statei. K 90-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Lva Dmitrievicha Kudryavtseva, Tr. MIAN, 283, 2013, 204–232 | Zbl

[32] Skubachevskii A. L., “Uravneniya Vlasova–Puassona dlya dvukhkompanentnoi plazmy v odnorodnom magnitnom pole”, Uspekhi matem. nauk, 69:2(416) (2014), 107–148 | DOI | Zbl