Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 510-535 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem describing complex (radiation-conductive) heat transfer in a system of semitransparent bodies is considered. Complex heat transfer is described by a system consisting of a stationary heat equation and an equation of radiative transfer with the boundary conditions of diffuse reflection and diffuse refraction of radiation. The dependence of the radiation intensity and optical properties of bodies on the frequency of radiation is taken into account. The unique existence of the weak solution to this problem is established. The comparison theorem is proven. Estimates of the weak solution are derived, and its regularity is established.
@article{ZVMMF_2017_57_3_a11,
     author = {A. A. Amosov},
     title = {Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {510--535},
     year = {2017},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a11/}
}
TY  - JOUR
AU  - A. A. Amosov
TI  - Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 510
EP  - 535
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a11/
LA  - ru
ID  - ZVMMF_2017_57_3_a11
ER  - 
%0 Journal Article
%A A. A. Amosov
%T Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 510-535
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a11/
%G ru
%F ZVMMF_2017_57_3_a11
A. A. Amosov. Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 510-535. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a11/

[1] Sparrow E. M., Cess R. D., Radiation heat transfer, Hemisphere, New York, 1978

[2] Siegel R., Howell J. R., Thermal radiation heat transfer, Taylor and Francis-Hemishpere, Washington, 2001

[3] Ozisik M. N., Radiative Transfer and interactions with conduction and convection, John Willey Sons, New York, 1973

[4] Modest F. M., Radiative heat transfer, Academic Press, 2003

[5] Amosov A. A., “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency”, J. Math. Sci., 164:3 (2010), 309–344 | DOI | MR | Zbl

[6] Amosov A. A., “Unique solvability of a nonstationary problem of radiative-conductive heat exchange in a system of semitransparent bodies”, Russian J. Math. Physics, 23:3 (2016), 309–334 | DOI | MR | Zbl

[7] Amosov A. A., “Nestatsionarnaya zadacha slozhnogo teploobmena v sisteme poluprozrachnykh tel c kraevymi usloviyami diffuznogo otrazheniya i prelomleniya izlucheniya”, Sovremennaya matematika. Fundamentalnye napravleniya, 59, 2016, 5–34 | Zbl

[8] Amosov A., “Solvability of a nonstationary problem of radiative-conductive heat transfer in a system of semitransparent bodies”, Integral Methods in Sci. and Eng. Theoretical and Computat. Advances, eds. Constanda Ch., Kirsch A., Birkhauser, Basel, 2015, 1–13 | DOI | Zbl

[9] Amosov A. A., “O razreshimosti odnoi zadachi teploobmena izlucheniem”, Dokl. AN SSSR, 245:6 (1979), 1341–1344

[10] Amosov A. A., “O predelnoi svyazi mezhdu dvumya zadachami teploobmena izlucheniem”, Dokl. AN SSSR, 246:5 (1979), 1080–1083

[11] Laitinen M. T., Tiihonen T., “Integro-differential equation modelling heat transfer in conducting, radiating and semitransparant materials”, Math. Methods in Applied Sci., 21 (1998), 375–392 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] Laitinen M., Tiihonen T., “Conductive-radiative heat transfer in grey materials”, Quart. Appl. Math., 59 (2001), 737–768 | DOI | MR | Zbl

[13] Laitinen Mika T., “Asymptotic analysis of conductive-radiative heat transfer”, Asymptotic Analysis, 29 (2002), 323–342 | MR | Zbl

[14] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer, Berlin, 1983 | MR | Zbl

[15] Agoshkov V. I., Boundary value problems for transport equations: functional spaces, variational statements, regularity of solutions, Birkhauser, Berlin, 1998 | MR

[16] Dautray R., Lions J.-L., Mathematical analysis and numerical methods for science and technology, v. 6, Evolution Problems II, Springer, Berlin, 2000 | MR

[17] Cessenat M., “Thèorémes de trace $L^p$ pour des espaces de fonctions de la neutronique”, C.R. Acad. Sci. Paris. Ser. I, 299 (1984), 831–834 | MR | Zbl

[18] Cessenat M., “Thèorémes de trace pour des espaces de fonctions de la neutronique”, C.R. Acad. Sci. Paris. Ser. I, 300 (1985), 89–92 | MR | Zbl

[19] Amosov A. A., “Boundary value problem for the radiation transfer equation with reflection and refraction conditions”, J. Math. Sci. (United States), 191:2 (2013), 101–149 | MR | Zbl

[20] Amosov A. A., “Boundary value problem for the radiation transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci. (United States), 193:2 (2013), 151–176 | MR | Zbl

[21] Amosov A. A., “Radiative transfer equation with diffuse reflection and refraction conditions in a system of bodies with piecewise smooth boundaries”, J. Math. Sci. (United States), 216:2 (2016), 155–181 | MR | Zbl

[22] Amosov A. A., “Some properties of boundary value problem for radiative transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci. (United States), 207:2 (2015), 118–141 | MR | Zbl

[23] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976