On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 491-509 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For semilinear elliptic equations $-\Delta u=\lambda|u|^{p-2}u-|u|^{q-2}u$, boundary value problems in bounded and unbounded domains are considered. In the plane of exponents $p\times q$, the so-called curves of critical exponents are defined that divide this plane into domains with qualitatively different properties of the boundary value problems and the corresponding parabolic equations. New solvability conditions for boundary value problems, conditions for the stability and instability of stationary solutions, and conditions for the existence of global solutions to parabolic equations are found.
@article{ZVMMF_2017_57_3_a10,
     author = {Ya. Sh. Il'yasov},
     title = {On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {491--509},
     year = {2017},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a10/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 491
EP  - 509
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a10/
LA  - ru
ID  - ZVMMF_2017_57_3_a10
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 491-509
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a10/
%G ru
%F ZVMMF_2017_57_3_a10
Ya. Sh. Il'yasov. On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 491-509. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a10/

[1] Berestycki H., Lions P. L., “Nonlinear scalar field equations, I existence of a ground state”, Arch. for Rat. Mech. and Anal., 82:4 (1983), 313–345 | MR | Zbl

[2] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. University of Tokyo. Sect. 1, Math., astr., phys., chem., 13:2 (1966), 109–124 | MR | Zbl

[3] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, Dokl. AN SSSR, 65:1 (1965), 36–39

[4] Bandle C., Brunner H., “Blow-up in diffusion equations: a survey”, J. Comput. and Appl. Math., 97:1 (1998), 3–22 | DOI | MR | Zbl

[5] Deng K., Levine H. A., “The role of critical exponents in blow-up theorems: the sequel”, J. Math. Anal. and Appl., 243:1 (2000), 85–126 | DOI | MR | Zbl

[6] Diaz J. I., Nonlinear partial differential equations and free boundaries, Pitman research notes in mathematics series, 06, Pitman, London, 1985 | MR

[7] Galaktionov V. A., Vasquez J. L., “The problem of blow-up in nonlinear parabolic equations”, Discr. and Contin. Dynam. Syst., 8:2 (2002), 399–434 | DOI | MR

[8] Galaktionov V. A., Mitidieri E., Pohozaev S. I., “Classification of global and blow-up signchanging solutions of a semilinear heat equation in the subcritical Fujita range: second-order diffusion”, Adv. Nonlinear Stud., 14:1 (2014), 1–29 | DOI | MR | Zbl

[9] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvolnykh, Tr. MIAN, 234, Nauka, M., 2001

[10] Pokhozhaev S. I., “Otsutstvie globalnykh reshenii nelineinykh evolyutsionnykh uravnenii”, Differents. ur-niya, 49:5 (2013), 625–632 | Zbl

[11] Díaz J. I., Hernández J., Il'yasov Y., “Flat and compactly supported solutions of some non-Lipschitz autonomous semilinear equations may be stable for $N\geqslant3$”, Special Issue of Chinese Annals of Mathematics (CAM) in honour of Haim Brezis, 38B:4 (2017), 1–34 | MR

[12] Pokhozhaev S. I., “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. MIAN SSSR, 92, Nauka, M., 1990, 146–163

[13] Pokhozhaev S. I., “Ob odnom konstruktivnom metode variatsionnogo ischisleniya”, Dokl. AN SSSR, 298:6 (1988), 1330–1333 | Zbl

[14] Strauss W. A., “Existence of solitary waves in higher dimensions”, Comm. Math. Phys., 55:2 (1977), 149–162 | DOI | MR | Zbl

[15] Derrick G. H., “Comments on Nonlinear Wave Equations as Models for Elementary Particles”, J. Math. Ph., 5 (1964), 1252–1254 | DOI | MR

[16] Comech A., “Global attraction to solitary waves”, Quantization, PDEs, and geometry, Operator Theory: Advances and Applications, 251, eds. D. Bahns, W. Bauer, I. Witt, Springer, Berlin, 2016 | MR | Zbl

[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[18] Il'yasov Y. S., Takac P., “Optimal-regularity, Pohozhaev's identity, and nonexistence of weak solutions to some quasilinear elliptic equations”, J. of Diff. Eq., 252:3 (2012), 2792–2822 | DOI | MR | Zbl

[19] Cortázar C., Elgueta M., Felmer P., “On a semi-linear elliptic problem in $\mathbb{R}^N$ with a non-Lipschitzian non-linearity”, Advances in Diff. Eqs., 1996, no. 1, 199–218 | MR | Zbl

[20] Kaper H., Kwong M., “Free boundary problems for Emden–Fowler equation”, Diff. and Int. Eq., 1990, no. 3, 353–362 | MR | Zbl

[21] Kaper H., Kwong M., Li Y., “Symmetry results for reaction-diffusion equations”, Diff. and Int. Equat., 1993, no. 6, 1045–1056 | MR | Zbl

[22] Berestycki H., Lions P. L., Peletier L. A., “An ODE approach to the existence of positive solutions for semilinear problems in $\mathbb{R}^N$”, Indiana Univ. Math. J., 30:1 (1981), 141–157 | DOI | MR | Zbl

[23] Díaz J. I., Hernández J., Il'yasov Y., “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption”, Nonl. Analys. Th., Meth. Appl., 119 (2015), 484–500 | DOI | MR | Zbl

[24] Il'yasov Y. S., On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, 2015, arXiv: 1509.08019

[25] Il'yasov Y. S., “On calculation of the bifurcations by the fibering approach”, Harmonic, Wavelet and P-adic Analysis, eds. N. M. Chnong, World Scientific Publishing, 2007, 141–155 | DOI | MR | Zbl

[26] Gilbarf D., Trudinger N. S., Elliptic partial differential equations of second oder, Grundlehren, 224, 2nd edition, Springer, Berlin, 1983 | MR

[27] Vázquez J. L., “A strong maximum principle for some quasilinear elliptic equations”, Appl. Math. Opt., 12:1 (1984), 191–202 | DOI | MR | Zbl

[28] Hernández J., Mancebo F. J., “Singular elliptic and parabolic equations”, Handbook of differential equations: stationary partial differential equations, v. 3, 2006, 317–400 | DOI | Zbl

[29] Quittner P., Souplet P., Superlinear parabolic problems: blow-up, global existence and steady states, Springer, Berlin, 2007 | MR

[30] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978

[31] Brezis H., “Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations”, Contirbutions to Nonlinear Functional Analysis, ed. E. H. Zarantonello, Acad. Press, New York, 1971, 101–156 | DOI | MR

[32] Il'yasov Y. S., “On critical exponent for an elliptic equation with non-Lipschitz nonlinearity”, Dynamical Systems, 2011, Suppl., 698–706 | MR | Zbl

[33] Il'yasov Y. S., Egorov Y., “Hopf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity”, Nonlin. Analys., 72 (2010), 3346–3355 | DOI | MR | Zbl

[34] Serrin J., Zou H., “Symmetry of ground states of quasilinear elliptic equations”, Arch. Rat. Mech. and Analys., 148:4 (1999), 265–290 | DOI | MR | Zbl

[35] Pucci P., Serrin J., Zou H., “A strong maximum principle and a compact support principle for singular elliptic inequalities”, J. Math. Pur. Appl., 78:8 (1999), 769–789 | DOI | MR | Zbl

[36] Bahri A., Lions P. L., “On the existence of a positive solution of semilinear elliptic equations in unbounded domains”, Annales de l'IHP Analyse non lineaire, 14:3 (1997), 365–413 | MR | Zbl

[37] Dávila J., Del Pino M., Musso M., “The supercritical lane-emden-fowler equation in exterior domains”, Comm. in Part. Diff., 32:8 (2007), 1225–1243 | DOI | MR | Zbl