@article{ZVMMF_2017_57_3_a10,
author = {Ya. Sh. Il'yasov},
title = {On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {491--509},
year = {2017},
volume = {57},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a10/}
}
TY - JOUR AU - Ya. Sh. Il'yasov TI - On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 491 EP - 509 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a10/ LA - ru ID - ZVMMF_2017_57_3_a10 ER -
%0 Journal Article %A Ya. Sh. Il'yasov %T On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 491-509 %V 57 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a10/ %G ru %F ZVMMF_2017_57_3_a10
Ya. Sh. Il'yasov. On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 3, pp. 491-509. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_3_a10/
[1] Berestycki H., Lions P. L., “Nonlinear scalar field equations, I existence of a ground state”, Arch. for Rat. Mech. and Anal., 82:4 (1983), 313–345 | MR | Zbl
[2] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. University of Tokyo. Sect. 1, Math., astr., phys., chem., 13:2 (1966), 109–124 | MR | Zbl
[3] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, Dokl. AN SSSR, 65:1 (1965), 36–39
[4] Bandle C., Brunner H., “Blow-up in diffusion equations: a survey”, J. Comput. and Appl. Math., 97:1 (1998), 3–22 | DOI | MR | Zbl
[5] Deng K., Levine H. A., “The role of critical exponents in blow-up theorems: the sequel”, J. Math. Anal. and Appl., 243:1 (2000), 85–126 | DOI | MR | Zbl
[6] Diaz J. I., Nonlinear partial differential equations and free boundaries, Pitman research notes in mathematics series, 06, Pitman, London, 1985 | MR
[7] Galaktionov V. A., Vasquez J. L., “The problem of blow-up in nonlinear parabolic equations”, Discr. and Contin. Dynam. Syst., 8:2 (2002), 399–434 | DOI | MR
[8] Galaktionov V. A., Mitidieri E., Pohozaev S. I., “Classification of global and blow-up signchanging solutions of a semilinear heat equation in the subcritical Fujita range: second-order diffusion”, Adv. Nonlinear Stud., 14:1 (2014), 1–29 | DOI | MR | Zbl
[9] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvolnykh, Tr. MIAN, 234, Nauka, M., 2001
[10] Pokhozhaev S. I., “Otsutstvie globalnykh reshenii nelineinykh evolyutsionnykh uravnenii”, Differents. ur-niya, 49:5 (2013), 625–632 | Zbl
[11] Díaz J. I., Hernández J., Il'yasov Y., “Flat and compactly supported solutions of some non-Lipschitz autonomous semilinear equations may be stable for $N\geqslant3$”, Special Issue of Chinese Annals of Mathematics (CAM) in honour of Haim Brezis, 38B:4 (2017), 1–34 | MR
[12] Pokhozhaev S. I., “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. MIAN SSSR, 92, Nauka, M., 1990, 146–163
[13] Pokhozhaev S. I., “Ob odnom konstruktivnom metode variatsionnogo ischisleniya”, Dokl. AN SSSR, 298:6 (1988), 1330–1333 | Zbl
[14] Strauss W. A., “Existence of solitary waves in higher dimensions”, Comm. Math. Phys., 55:2 (1977), 149–162 | DOI | MR | Zbl
[15] Derrick G. H., “Comments on Nonlinear Wave Equations as Models for Elementary Particles”, J. Math. Ph., 5 (1964), 1252–1254 | DOI | MR
[16] Comech A., “Global attraction to solitary waves”, Quantization, PDEs, and geometry, Operator Theory: Advances and Applications, 251, eds. D. Bahns, W. Bauer, I. Witt, Springer, Berlin, 2016 | MR | Zbl
[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[18] Il'yasov Y. S., Takac P., “Optimal-regularity, Pohozhaev's identity, and nonexistence of weak solutions to some quasilinear elliptic equations”, J. of Diff. Eq., 252:3 (2012), 2792–2822 | DOI | MR | Zbl
[19] Cortázar C., Elgueta M., Felmer P., “On a semi-linear elliptic problem in $\mathbb{R}^N$ with a non-Lipschitzian non-linearity”, Advances in Diff. Eqs., 1996, no. 1, 199–218 | MR | Zbl
[20] Kaper H., Kwong M., “Free boundary problems for Emden–Fowler equation”, Diff. and Int. Eq., 1990, no. 3, 353–362 | MR | Zbl
[21] Kaper H., Kwong M., Li Y., “Symmetry results for reaction-diffusion equations”, Diff. and Int. Equat., 1993, no. 6, 1045–1056 | MR | Zbl
[22] Berestycki H., Lions P. L., Peletier L. A., “An ODE approach to the existence of positive solutions for semilinear problems in $\mathbb{R}^N$”, Indiana Univ. Math. J., 30:1 (1981), 141–157 | DOI | MR | Zbl
[23] Díaz J. I., Hernández J., Il'yasov Y., “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption”, Nonl. Analys. Th., Meth. Appl., 119 (2015), 484–500 | DOI | MR | Zbl
[24] Il'yasov Y. S., On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, 2015, arXiv: 1509.08019
[25] Il'yasov Y. S., “On calculation of the bifurcations by the fibering approach”, Harmonic, Wavelet and P-adic Analysis, eds. N. M. Chnong, World Scientific Publishing, 2007, 141–155 | DOI | MR | Zbl
[26] Gilbarf D., Trudinger N. S., Elliptic partial differential equations of second oder, Grundlehren, 224, 2nd edition, Springer, Berlin, 1983 | MR
[27] Vázquez J. L., “A strong maximum principle for some quasilinear elliptic equations”, Appl. Math. Opt., 12:1 (1984), 191–202 | DOI | MR | Zbl
[28] Hernández J., Mancebo F. J., “Singular elliptic and parabolic equations”, Handbook of differential equations: stationary partial differential equations, v. 3, 2006, 317–400 | DOI | Zbl
[29] Quittner P., Souplet P., Superlinear parabolic problems: blow-up, global existence and steady states, Springer, Berlin, 2007 | MR
[30] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978
[31] Brezis H., “Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations”, Contirbutions to Nonlinear Functional Analysis, ed. E. H. Zarantonello, Acad. Press, New York, 1971, 101–156 | DOI | MR
[32] Il'yasov Y. S., “On critical exponent for an elliptic equation with non-Lipschitz nonlinearity”, Dynamical Systems, 2011, Suppl., 698–706 | MR | Zbl
[33] Il'yasov Y. S., Egorov Y., “Hopf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity”, Nonlin. Analys., 72 (2010), 3346–3355 | DOI | MR | Zbl
[34] Serrin J., Zou H., “Symmetry of ground states of quasilinear elliptic equations”, Arch. Rat. Mech. and Analys., 148:4 (1999), 265–290 | DOI | MR | Zbl
[35] Pucci P., Serrin J., Zou H., “A strong maximum principle and a compact support principle for singular elliptic inequalities”, J. Math. Pur. Appl., 78:8 (1999), 769–789 | DOI | MR | Zbl
[36] Bahri A., Lions P. L., “On the existence of a positive solution of semilinear elliptic equations in unbounded domains”, Annales de l'IHP Analyse non lineaire, 14:3 (1997), 365–413 | MR | Zbl
[37] Dávila J., Del Pino M., Musso M., “The supercritical lane-emden-fowler equation in exterior domains”, Comm. in Part. Diff., 32:8 (2007), 1225–1243 | DOI | MR | Zbl