Modified method of splitting with respect to physical processes for solving radiation gas dynamics equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 303-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach based on a modified splitting method is proposed for solving the radiation gas dynamics equations in the multigroup kinetic approximation. The idea of the approach is that the original system of equations is split using the thermal radiation transfer equation rather than the energy equation. As a result, analytical methods can be used to solve integrodifferential equations and problems can be computed in the multigroup kinetic approximation without iteration with respect to the collision integral or matrix inversion. Moreover, the approach can naturally be extended to multidimensional problems. A high-order accurate difference scheme is constructed using an approximate Godunov solver for the Riemann problem in two-temperature gas dynamics.
@article{ZVMMF_2017_57_2_a7,
     author = {N. Ya. Moiseev},
     title = {Modified method of splitting with respect to physical processes for solving radiation gas dynamics equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {303--315},
     year = {2017},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a7/}
}
TY  - JOUR
AU  - N. Ya. Moiseev
TI  - Modified method of splitting with respect to physical processes for solving radiation gas dynamics equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 303
EP  - 315
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a7/
LA  - ru
ID  - ZVMMF_2017_57_2_a7
ER  - 
%0 Journal Article
%A N. Ya. Moiseev
%T Modified method of splitting with respect to physical processes for solving radiation gas dynamics equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 303-315
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a7/
%G ru
%F ZVMMF_2017_57_2_a7
N. Ya. Moiseev. Modified method of splitting with respect to physical processes for solving radiation gas dynamics equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 303-315. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a7/

[1] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[2] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[3] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988

[4] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985

[5] Bai Shi-i, Dinamika izluchayuschego gaza, Mir, M., 1968

[6] Belotserkovskii O. M., Davydov Yu. M., Metod krupnykh chastits v gazovoi dinamike, Fizmatlit, M., 1982

[7] Karlson B., Bell Dzh., “Reshenie transportnogo uravneniya Sn-metodom”, Fizika yadernykh reaktorov, Atomizdat, M., 1959, 408–432

[8] Karlson B., Bell Dzh., “Chislennoe reshenie zadach kineticheskoi teorii neitronov”, Teoriya yadernykh reaktorov, Gosatomizdat, M., 1963, 243–258 | Zbl

[9] Bass L. P., Voloschenko A. M., Germogenova T. A., Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPM im. M.V. Keldysha RAN, M., 1986

[10] Vladimirov V. S., “Chislennoe reshenie uravneniya dlya sfery”, Vychisl. matem., VTs AN SSSR, M., 1958, 3–33

[11] Nikiforova A. V., Tarasov V. A., Troschiev V. E., “O reshenii kineticheskikh uravnenii divergentnym metodom kharakteristik”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 1041–1048 | Zbl

[12] Feautrier P. C. R., “Sur la resolution numerigue de l'equation de transfer”, Acad. Sci. Paris, 258 (1964), 3189–3191

[13] Rybicki G., “A modified feautrier method”, J. of Quantitative Spectroscopy and Radiative Transfer, 11 (1971), 589–596 | DOI

[14] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1070–1087

[15] Anistratov D. Yu., Aristova E. N., Goldin V. Ya., “Nelineinyi metod resheniya zadach perenosa izlucheniya v srede”, Matem. modelirovanie, 8:12 (1996), 3–28

[16] Zuev A. I., “Primenenie metoda Nyutona-Kantorovicha dlya resheniya zadachi o rasprostranenii neravnovesnogo izlucheniya”, Zh. vychisl. matem. i matem. fiz., 13:3 (1973), 792–798

[17] Gusev V. Yu., Kozmanov M. Yu., Rachilov E. B., “Metod resheniya neyavnykh raznostnykh uravnenii, approksimiruyuschikh sistemy uravnenii perenosa i diffuzii izlucheniya”, Zh. vychisl. matem. i matem. fiz., 24:12 (1984), 1842–1849 | Zbl

[18] Fedotova L. P., Shagaliev R. M., “Konechnoraznostnyi KM-metod dlya dvumernykh nestatsionarnykh protsessov perenosa v mnogogruppovom kineticheskom priblizhenii”, Matem. modelirovanie, 3:6 (1991), 29–41

[19] Gadzhiev A. D., Romanova E. M., Seleznev V. N., Shestakov A. A., “Metodika TOM4-KD dlya matematicheskogo modelirovaniya dvumernykh uravnenii perenosa izlucheniya v mnogogruppovom kvazidiffuzionnom priblizhenii”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fiz. protsessov, 2001, no. 4, 48–59

[20] Karlykhanov N. G., “Postroenie optimalnykh mnogodiagonalnykh metodov resheniya zadach perenosa izlucheniya”, Zh. vychisl. matem. i matem. fiz., 37:4 (1997), 494–498 | Zbl

[21] Dolgoleva G. V., “Chislennoe reshenie sistemy uravnenii, opisyvayuschei perenos izlucheniya i vzaimodeistvie ego s veschestvom”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fiz. protsessov, 1991, no. 1, 58–60

[22] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971

[23] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 2001

[24] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978

[25] Mikhals D., Zvezdnye atmosfery, Mir, M., 1982

[26] Groshev E. V., “O primenenii metoda Raibiki k protsessu resheniya sistemy uravnenii perenosa izlucheniya iteratsiyami po granichnym usloviyam”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fiz. protsessov, 2010, no. 1, 39–47

[27] Gadzhiev A. D., Seleznev V. N., Shestakov A. A., “DS-n metod s iskusstvennoi dissipatsiei i VDM-metod uskoreniya iteratsii dlya chislennogo resheniya dvumernogo uravneniya perenosa teplovogo izlucheniya v kineticheskoi modeli”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 2003, no. 4, 33–46

[28] Alcouff R. E., “A stable diffusion synthetic acceleration method for neutron transport iterations”, Trans. Am. Nucl. Soc., 23 (1976), 203

[29] Alcouff R. E., McCoy D. R., Larsen E. W., “Finite difference effects in the synthetic acceleration method”, Trans. Am. Nucl. Soc., 39 (1981), 462

[30] Sushkevich T. A., Matematicheskie modeli perenosa izlucheniya, Binom, M., 2006

[31] Moiseev N. Ya., “Yavno-neyavnaya raznostnaya skhema dlya sovmestnogo resheniya uravnenii perenosa teplovogo izlucheniya i energii metodom rasschepleniya”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 442–458 | DOI | Zbl

[32] Moiseev N. Ya., Shmakov V. M., “Modifitsirovannyi metod rasschepleniya dlya resheniya nestatsionarnogo kineticheskogo uravneniya perenosa chastits”, Zh. vychisl. matem. i matem. fiz., 56:8 (2016), 1480–1490 | DOI | Zbl

[33] Marchuk G. I., Yanenko N. N., “Reshenie mnogomernogo kineticheskogo uravneniya metodom rasschepleniya”, Dokl. AN SSSR, 157:6 (1964), 1291–1292 | Zbl

[34] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 ; С. К. Годунов (ред.), Численное решение многомерных задач газовой динамики, Наука, М., 1976 | Zbl | MR

[35] Zabrodin A. V., Prokopov G. P., “Metodika chislennogo modelirovaniya dvumernykh nestatsionarnykh techenii teploprovodnogo gaza v trekhtemperaturnom priblizhenii”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fiz. protsessov, 1998, no. 3, 3–16

[36] Prokopov G. P., “Zadacha o raspade razryva v trekhtemperaturnoi gazovoi dinamike”, Preprinty IPM im. M. V. Keldysha RAN, 2004, 066, 28 pp. | Zbl

[37] Moiseev N. Ya., Shestakov E. A., “Reshenie zadachi o raspade razryva v dvukhtemperaturnoi i trekhtemperaturnoi gazovoi dinamike”, Zh. vychisl. matem. i matem. fiz., 55:9 (2015), 1579–1585 | DOI | Zbl

[38] Zhang W., Howell L., Almgren A., Burrows A., Dolence J., Bell J., “Castro: a new compressible astrophysical solver. III. Multigroup radiation hydrodynamics”, The Astrophysical J. Supplement Series, 204:7 (2013), 1–27

[39] Kraiko A. N., Teoreticheskaya gazovaya dinamika, Torus press, M., 2010

[40] Samarskii A. A., Popov Yu. P., Raznostnye skhemy gazovoi dinamiki, Nauka, M., 1975

[41] Moiseev N. Ya., “Soglasovannaya approksimatsiya v raznostnykh skhemakh tipa S. K. Godunova dlya resheniya odnomernykh zadach gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 36:1 (1996), 149–150

[42] Fedorenko R. P., “Primenenie raznostnykh skhem vysokoi tochnosti dlya chislennogo resheniya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1122–1128 | Zbl

[43] Moiseev N. Ya., Silanteva I. Yu., “Raznostnye skhemy povyshennoi tochnosti dlya resheniya uravnenii gazovoi dinamiki metodom Godunova s antidiffuziei”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 857–873 | Zbl

[44] Moiseev N. Ya., “Neyavnye raznostnye skhemy beguschego scheta povyshennoi tochnosti”, Zh. vychisl. matem. i matem. fiz., 51:5 (2011), 920–935 | Zbl

[45] Bagrinovskii K. A., Godunov S. K., “Raznostnye skhemy dlya mnogomernykh zadach”, Dokl. AN SSSR, 1957, 431–433 | Zbl

[46] Vershinskaya A. S., Netsvetaev D. S., Urakova A. V., Shestakov A. A., “Ob odnoi testovoi zadache RGD na szhatie sloistoi sistemy s uchetom perenosa izlucheniya v razlichnykh priblizheniyakh”, Tezisy. Zababakhinskie nauchnye chteniya, RFYaTs-VNIITF, 2014

[47] Antonov A. S., Parallelnoe programmirovanie s ispolzovaniem tekhnologii OpenMP, Izd. Moskovskogo universiteta, M., 2009