@article{ZVMMF_2017_57_2_a6,
author = {H. Beiglo and M. Erfanian and M. Gachpazan},
title = {A new sequential approach for solving the integro-differential equation via {Haar} wavelet bases},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {302},
year = {2017},
volume = {57},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a6/}
}
TY - JOUR AU - H. Beiglo AU - M. Erfanian AU - M. Gachpazan TI - A new sequential approach for solving the integro-differential equation via Haar wavelet bases JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 302 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a6/ LA - en ID - ZVMMF_2017_57_2_a6 ER -
%0 Journal Article %A H. Beiglo %A M. Erfanian %A M. Gachpazan %T A new sequential approach for solving the integro-differential equation via Haar wavelet bases %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 302 %V 57 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a6/ %G en %F ZVMMF_2017_57_2_a6
H. Beiglo; M. Erfanian; M. Gachpazan. A new sequential approach for solving the integro-differential equation via Haar wavelet bases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a6/
[1] H. R. Thiem, “A model for spatio spread of an epidemic”, J. Math. Bio., 4 (1977), 337–351 | DOI | MR | Zbl
[2] P. Darania, A. Ebadian, “A method for the numerical solution of the integro-differential equations”, Appl. Math. Comput., 188 (2007), 657–668 | MR | Zbl
[3] U. Lepik, “Haar wavelet method for nonlinear integro-differential equations”, Appl. Math. Comput., 176 (2006), 324–333 | MR | Zbl
[4] M. Erfanian, M. Gachpazan, “Rationalized Haar wavelet bases to approximate solution of nonlinear Fredholm integral equations with error analysis”, Appl. Math. Comput., 265 (2015), 304–312 | MR
[5] M. Erfanian, M. Gachpazan, H. Beiglo, “Solving mixed Fredholm-Volterra integral equations by using the operational matrix of RH wavelets”, SeMA J., 69 (2015), 25–36 | DOI | MR | Zbl
[6] K. Maleknejad, B. Basirat, E. Hashemizadeh, “Hybrid Legendre polynomials and Block-pulse functions approch for nonlinear Volterra–Fredholm integro-differential equations”, Comput. Math. Appl., 61 (2011), 2821–2828 | DOI | MR | Zbl
[7] E. Babolian, Z. Masouria, S. Hatamzadeh-Varmazyar, “New direct method to solve nonlinear Volterra-Fredholm integral and integro-differential equations using operational matrix with block-pulse functions”, Prog. Electromagn. Res., 8 (2008), 59–76 | DOI | MR
[8] E. Babolian, Z. Masouria, S. Hatamzadeh-Varmazyar, “Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular function”, Comput. Math. Appl., 58 (2009), 239–247 | DOI | MR | Zbl
[9] B. Sepehriana, M. Razzaghi, “Single-term Walsh series method for the Volterra integro-differential equations”, Eng. Anal. Bound. Elem., 28 (2004), 1315–1319 | DOI
[10] A. Avudainayagam, C. Vani, “Wavelet-Galerkin method for integro-differential equations”, Word App. Sci. J., 7 (2009), 50–56
[11] J. Zhao, R. M. Corless, “Compact finite difference method for integro-differential equations”, Appl. Math. Comput., 177 (2006), 271–288 | MR
[12] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Commun. Pure Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl
[13] J. M. Combes, A. Grossmann, P. Tchamitchian, Wavelets, Time-Frequency Methods, and Phase Space, Springer-Verlag, Berlin, 1989 | MR | Zbl
[14] Y. Mayer, Wavelets and Applications, Springer-Verlag, Berlin, 1992 | MR
[15] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992 | MR | Zbl
[16] M. B. Ruskai, G. Beylkin, P. Coifman, I. Daubechies, S. Mallat, Y. Mayer, L. Raphael, Wavelets and Their Applications, Boston, 1992 | MR
[17] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[18] M. T. Kajani, A. H. Vencheh, “Solving linear integro-differential equation with Legendre wavelets”, Int. J. Comput. Math., 81:6 (2004), 719–726 | DOI | MR | Zbl
[19] M. Lakestani, B. N. Saray, M. Dehghan, “Numerical solution for the weakly singular Fredholm integrodifferential equations using Legendre multiwavelets”, J. Comput. Appl. Math., 235 (2011), 3291–3303 | DOI | MR | Zbl
[20] L. Zhao, Q. Fan, “Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet”, Commun. Nonlinear Sci. Number. Simul., 17 (2012), 2333–2341 | DOI | MR
[21] M. Razzaghi, J. Nazarzadeh, “Walsh functions”, Wiley Encyclopedia Electric. Electron. Eng., 23 (1999), 429–440
[22] R. T. Lynch, J. J. Reis, “Haar transform image coding”, Proceedings of the National Telecommunications Conference (Dallas, Texas, 1976), 441–443
[23] J. J. Reis, R. T. Lynch, J. Butman, “Adaptive Haar transform video bandwidth reduction system for RPVs”, Proceedings of Annual Meeting of Society of Photo-Optic Institute of Engineering (SPIE) (San Diego, CA, 1976), 24–35 | MR
[24] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[25] M. I. Berenguer, M. V. Fernandez Munoz, A. I. Garralda-Guillem, M. Ruiz Galan, “A sequential approach for solving the Fredholm integro-differential equation”, Appl. Math. Comput., 62 (2012), 297–304 | MR | Zbl
[26] M. I. Berenguer, M. V. Fernandez Munoz, A. I. Garralda-Guillem, M. Ruiz Galan, “Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation”, Fixed Point Theory Appl., 2009 | DOI | MR
[27] H. Danfu, S. Xufeng, “Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration”, Appl. Math. Comput., 194 (2007), 460–466 | MR | Zbl
[28] P. Darania, A. Ebadian, “A method for the numerical solution of the integro-differential equations”, Appl. Math. Comput., 188 (2007), 657–668 | MR | Zbl
[29] E. Yusufoglu (Agadjanov), “Improved homotopy perturbation method for solving Fredholm type integro-differential equations”, Chaos Solitons Fractals, 41 (2009), 28–37 | DOI | Zbl