A new sequential approach for solving the integro-differential equation via Haar wavelet bases
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we present a method for numerical approximation of fixed point operator, particularly for the mixed Volterra–Fredholm integro-differential equations. The main tool for error analysis is the Banach fixed point theorem. The advantage of this method is that it does not use numerical integration, we use the properties of rationalized Haar wavelets for approximate of integral. The cost of our algorithm increases accuracy and reduces the calculation, considerably. Some examples are provided toillustrate its high accuracy and numerical results are compared with other methods in the other papers.
@article{ZVMMF_2017_57_2_a6,
     author = {H. Beiglo and M. Erfanian and M. Gachpazan},
     title = {A new sequential approach for solving the integro-differential equation via {Haar} wavelet bases},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {302},
     year = {2017},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a6/}
}
TY  - JOUR
AU  - H. Beiglo
AU  - M. Erfanian
AU  - M. Gachpazan
TI  - A new sequential approach for solving the integro-differential equation via Haar wavelet bases
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 302
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a6/
LA  - en
ID  - ZVMMF_2017_57_2_a6
ER  - 
%0 Journal Article
%A H. Beiglo
%A M. Erfanian
%A M. Gachpazan
%T A new sequential approach for solving the integro-differential equation via Haar wavelet bases
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 302
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a6/
%G en
%F ZVMMF_2017_57_2_a6
H. Beiglo; M. Erfanian; M. Gachpazan. A new sequential approach for solving the integro-differential equation via Haar wavelet bases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a6/

[1] H. R. Thiem, “A model for spatio spread of an epidemic”, J. Math. Bio., 4 (1977), 337–351 | DOI | MR | Zbl

[2] P. Darania, A. Ebadian, “A method for the numerical solution of the integro-differential equations”, Appl. Math. Comput., 188 (2007), 657–668 | MR | Zbl

[3] U. Lepik, “Haar wavelet method for nonlinear integro-differential equations”, Appl. Math. Comput., 176 (2006), 324–333 | MR | Zbl

[4] M. Erfanian, M. Gachpazan, “Rationalized Haar wavelet bases to approximate solution of nonlinear Fredholm integral equations with error analysis”, Appl. Math. Comput., 265 (2015), 304–312 | MR

[5] M. Erfanian, M. Gachpazan, H. Beiglo, “Solving mixed Fredholm-Volterra integral equations by using the operational matrix of RH wavelets”, SeMA J., 69 (2015), 25–36 | DOI | MR | Zbl

[6] K. Maleknejad, B. Basirat, E. Hashemizadeh, “Hybrid Legendre polynomials and Block-pulse functions approch for nonlinear Volterra–Fredholm integro-differential equations”, Comput. Math. Appl., 61 (2011), 2821–2828 | DOI | MR | Zbl

[7] E. Babolian, Z. Masouria, S. Hatamzadeh-Varmazyar, “New direct method to solve nonlinear Volterra-Fredholm integral and integro-differential equations using operational matrix with block-pulse functions”, Prog. Electromagn. Res., 8 (2008), 59–76 | DOI | MR

[8] E. Babolian, Z. Masouria, S. Hatamzadeh-Varmazyar, “Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular function”, Comput. Math. Appl., 58 (2009), 239–247 | DOI | MR | Zbl

[9] B. Sepehriana, M. Razzaghi, “Single-term Walsh series method for the Volterra integro-differential equations”, Eng. Anal. Bound. Elem., 28 (2004), 1315–1319 | DOI

[10] A. Avudainayagam, C. Vani, “Wavelet-Galerkin method for integro-differential equations”, Word App. Sci. J., 7 (2009), 50–56

[11] J. Zhao, R. M. Corless, “Compact finite difference method for integro-differential equations”, Appl. Math. Comput., 177 (2006), 271–288 | MR

[12] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Commun. Pure Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl

[13] J. M. Combes, A. Grossmann, P. Tchamitchian, Wavelets, Time-Frequency Methods, and Phase Space, Springer-Verlag, Berlin, 1989 | MR | Zbl

[14] Y. Mayer, Wavelets and Applications, Springer-Verlag, Berlin, 1992 | MR

[15] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992 | MR | Zbl

[16] M. B. Ruskai, G. Beylkin, P. Coifman, I. Daubechies, S. Mallat, Y. Mayer, L. Raphael, Wavelets and Their Applications, Boston, 1992 | MR

[17] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[18] M. T. Kajani, A. H. Vencheh, “Solving linear integro-differential equation with Legendre wavelets”, Int. J. Comput. Math., 81:6 (2004), 719–726 | DOI | MR | Zbl

[19] M. Lakestani, B. N. Saray, M. Dehghan, “Numerical solution for the weakly singular Fredholm integrodifferential equations using Legendre multiwavelets”, J. Comput. Appl. Math., 235 (2011), 3291–3303 | DOI | MR | Zbl

[20] L. Zhao, Q. Fan, “Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet”, Commun. Nonlinear Sci. Number. Simul., 17 (2012), 2333–2341 | DOI | MR

[21] M. Razzaghi, J. Nazarzadeh, “Walsh functions”, Wiley Encyclopedia Electric. Electron. Eng., 23 (1999), 429–440

[22] R. T. Lynch, J. J. Reis, “Haar transform image coding”, Proceedings of the National Telecommunications Conference (Dallas, Texas, 1976), 441–443

[23] J. J. Reis, R. T. Lynch, J. Butman, “Adaptive Haar transform video bandwidth reduction system for RPVs”, Proceedings of Annual Meeting of Society of Photo-Optic Institute of Engineering (SPIE) (San Diego, CA, 1976), 24–35 | MR

[24] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[25] M. I. Berenguer, M. V. Fernandez Munoz, A. I. Garralda-Guillem, M. Ruiz Galan, “A sequential approach for solving the Fredholm integro-differential equation”, Appl. Math. Comput., 62 (2012), 297–304 | MR | Zbl

[26] M. I. Berenguer, M. V. Fernandez Munoz, A. I. Garralda-Guillem, M. Ruiz Galan, “Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation”, Fixed Point Theory Appl., 2009 | DOI | MR

[27] H. Danfu, S. Xufeng, “Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration”, Appl. Math. Comput., 194 (2007), 460–466 | MR | Zbl

[28] P. Darania, A. Ebadian, “A method for the numerical solution of the integro-differential equations”, Appl. Math. Comput., 188 (2007), 657–668 | MR | Zbl

[29] E. Yusufoglu (Agadjanov), “Improved homotopy perturbation method for solving Fredholm type integro-differential equations”, Chaos Solitons Fractals, 41 (2009), 28–37 | DOI | Zbl