Asymptotic analysis of the model of gyromagnetic autoresonance
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 285-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The system of ordinary differential equations that in a specific case describes the cyclotron motion of a charged particle in an electromagnetic wave is considered. The capture of the particle into autoresonance when its energy undergoes a significant change is studied. The main result is a description of the capture domain, which is the set of initial points in the phase plane where the resonance trajectories start. This description is obtained in the asymptotic approximation with respect to the small parameter that in this problem corresponds to the amplitude of the electromagnetic wave.
@article{ZVMMF_2017_57_2_a5,
     author = {L. A. Kalyakin},
     title = {Asymptotic analysis of the model of gyromagnetic autoresonance},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {285--301},
     year = {2017},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a5/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotic analysis of the model of gyromagnetic autoresonance
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 285
EP  - 301
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a5/
LA  - ru
ID  - ZVMMF_2017_57_2_a5
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotic analysis of the model of gyromagnetic autoresonance
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 285-301
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a5/
%G ru
%F ZVMMF_2017_57_2_a5
L. A. Kalyakin. Asymptotic analysis of the model of gyromagnetic autoresonance. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 285-301. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a5/

[1] Milantev V. P., “Tsiklotronnyi avtorezonans (k 50-letiyu otkrytiya yavleniya)”, Uspekhi fiz. nauk, 180:8 (2013), 875–884 | DOI

[2] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi matem. nauk, 63:5 (2008), 3–72 | DOI

[3] Golovanivsky K. S., “The gyromagnetic autoresonance”, IEEE Trans. on plasma science, PS-11:1 (1983), 28–35 | DOI

[4] Kalyakin L. A., “Asimptoticheskii analiz modeli tsiklotronnogo giromagnitnogo avtorezonansa”, Vestnik ChelGU. Fizika, 2015, no. 21, 68–74

[5] Milantev V. P., “Yavlenie tsiklotronnogo avtorezonansa i ego primeneniya”, Uspekhi fiz. nauk, 167:1 (1997), 3–16 | DOI

[6] Golovanivsky K. S., “Autoresonant acceleration of electrons at nonlinear ECR in a magnetic field which is smoothly growing in time”, Physica Scripta, 22 (1980), 126–133 | DOI

[7] Landau L. D., Lifshits E. M., Teriya polya, Nauka, M., 1973

[8] Roberts C. S., Buchsbaum S. J., “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propagating along the field”, Phys. Rev., 135 (1964), A381–A389 | DOI | MR

[9] Kolomenskii A. A., Lebedev A. N., “Rezonansnye yavleniya pri dvizhenii chastits v ploskoi elektromagnitnoi volne”, Zh. eksperim. i teor. fiz., 44:1 (1963), 261–269 | Zbl

[10] Davydovskii V. Ya., “O vozmozhnosti rezonansnogo uskoreniya zaryazhennykh chastits elektromagnitnymi volnami v postoyannom magnitnom pole”, Zh. eksperim. i teor. fiz., 43:3 (1962), 886–888 | Zbl

[11] Veksler V. I., “Novyi metod uskoreniya relyativistskikh chastits”, Dokl. AN SSSR, 43 (1944), 346–348

[12] Veksler V. I., “O novom metode uskoreniya chastits”, Dokl. AN SSSR, 44 (1944), 393–396

[13] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985

[14] Neishtadt A. I., “Prokhozhdenie cherez separatrisu v rezonansnoi zadache s medlenno menyayuschimsya parametrom”, Prikl. matem. i mekhan., 39:4 (1975), 621–632 | Zbl

[15] Kiselev O. M., “Ostsillyatsii okolo separatrisy v uravnenii Dyuffinga”, Tr. IMM UrO RAN, 18, no. 2, 2012, 141–153

[16] Chirikov B. V., “Prokhozhdenie nelineinoi kolebatelnoi sistemy cherez rezonans”, Dokl. AN SSSR, 125:5 (1959), 1015–1018 | Zbl

[17] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1977

[18] Neishtadt A. I., Timofeev A. V., “Autoresonance in electron cyclotron heating of a plasma”, Zh. Eksp. Teor. Fiz., 93 (1987), 1706–1713

[19] Friedland L., “Spatial autoresonance ciyclotron accelerator”, Phys. Plasmas, 1:2 (1994), 421–428 | DOI

[20] Itin A. P., Neishtadt A. I., Vasiliev A. A., “Capture into resonance in dynamics of a charged partice in magnetic field and electrostatic wave”, Physica D, 141:4 (2000), 281–296 | DOI | MR | Zbl

[21] Fajans J., Friedland L., “Autoresonant (non stationary) excitation of a pendulum, Plutinos, plasmas and other nonlinear oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI

[22] Garifullin R. N., “Issledovanie rosta reshenii nelineinogo uravneniya v zavisimosti ot nachalnykh dannykh”, Sb. trudov Regionalnoi shkoly-konferentsii dlya studentov, aspirantov i molodykh uchenykh po matematike i fizike (Ufa, 2003), v. 1, Matematika, 189–195

[23] Garifullin R. N., Kalyakin L. A., Shamsutdinov M. A., “Avtorezonansnoe vozbuzhdenie brizera v slabykh ferromagnetikakh”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 1208–1220

[24] Kalyakin L. A., “Usrednenie v modeli avtorezonansa”, Matem. zametki, 73:3 (2003), 449–452 | DOI | Zbl

[25] Garifullin R. N., “Asimptoticheskoe reshenie zadachi ob avtorezonanse. Vneshnee razlozhenie”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1605–1617