On the linear classification of even and odd permutation matrices and the complexity of computing the permanent
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 362-372
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of linear classification of the parity of permutation matrices is studied. This problem is related to the analysis of complexity of a class of algorithms designed for computing the permanent of a matrix that generalizes the Kasteleyn algorithm. Exponential lower bounds on the magnitude of the coefficients of the functional that classifies the even and odd permutation matrices in the case of the field of real numbers and similar linear lower bounds on the rank of the classifying map for the case of the field of characteristic 2 are obtained.
@article{ZVMMF_2017_57_2_a11,
author = {A. V. Babenko and M. N. Vyalyi},
title = {On the linear classification of even and odd permutation matrices and the complexity of computing the permanent},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {362--372},
publisher = {mathdoc},
volume = {57},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a11/}
}
TY - JOUR AU - A. V. Babenko AU - M. N. Vyalyi TI - On the linear classification of even and odd permutation matrices and the complexity of computing the permanent JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 362 EP - 372 VL - 57 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a11/ LA - ru ID - ZVMMF_2017_57_2_a11 ER -
%0 Journal Article %A A. V. Babenko %A M. N. Vyalyi %T On the linear classification of even and odd permutation matrices and the complexity of computing the permanent %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 362-372 %V 57 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a11/ %G ru %F ZVMMF_2017_57_2_a11
A. V. Babenko; M. N. Vyalyi. On the linear classification of even and odd permutation matrices and the complexity of computing the permanent. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 362-372. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a11/