@article{ZVMMF_2017_57_2_a11,
author = {A. V. Babenko and M. N. Vyalyi},
title = {On the linear classification of even and odd permutation matrices and the complexity of computing the permanent},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {362--372},
year = {2017},
volume = {57},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a11/}
}
TY - JOUR AU - A. V. Babenko AU - M. N. Vyalyi TI - On the linear classification of even and odd permutation matrices and the complexity of computing the permanent JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 362 EP - 372 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a11/ LA - ru ID - ZVMMF_2017_57_2_a11 ER -
%0 Journal Article %A A. V. Babenko %A M. N. Vyalyi %T On the linear classification of even and odd permutation matrices and the complexity of computing the permanent %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 362-372 %V 57 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a11/ %G ru %F ZVMMF_2017_57_2_a11
A. V. Babenko; M. N. Vyalyi. On the linear classification of even and odd permutation matrices and the complexity of computing the permanent. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 362-372. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a11/
[1] Abbe E., Alon N., Bandeira A. S., Linear Boolean classification, coding and “the critical problem”, 2014, arXiv: 1401.6528v2 | MR
[2] Crapo H. H., Rota G. C., On the foundations of combinatorial theory: Combinatorial geometries, MIT Press, Cambridge, MA, 1970 | MR
[3] Aigner M., Kombinatornaya teoriya, Mir, M., 1982
[4] Arora S., Barak B., Computational complexity: a modern approach, Cambridge Univ. Press, Cambridge, UK, 2009 | MR | Zbl
[5] Valiant L. G., “The complexity of computing the permanent”, Theoretical computer science, 8:2 (1979), 189–201 | DOI | MR | Zbl
[6] Ryser H. J., Combinatorial mathematics, Carus Math. Monographs, 14, Math. Assoc. of America, Washington, DC, 1963 | Zbl
[7] Mahajan M., Vinay V., “Determinant: old algorithms, new insights”, SIAM J. Discrete Math., 12:4 (1999), 474–490 | DOI | MR | Zbl
[8] Kasteleyn P. W., “Graph theory and crystal physics”, Graph Theory and Theoretical Physics, ed. F. Harary, Academic Press, London–New York, 1967, 43–110 | MR
[9] Smetanin Yu. G., Khachiyan L. G., “Primenenie psevdopolinomialnykh algoritmov dlya nekotorykh zadach kombinatornoi optimizatsii s ogranicheniyami”, Izv. AN SSSR. Tekh. Kibernetika, 1986, no. 6, 139–144
[10] Lovasz L., “Semidefinite programs and combinatorial optimization”, Recent advances in algorithms and combinatorics, eds. B. A. Reed, C. L. Sales, Springer, Berlin, 2003, 137–194 | MR | Zbl