@article{ZVMMF_2017_57_2_a0,
author = {A. V. Kalinin and M. I. Sumin and A. A. Tyukhtina},
title = {Inverse final observation problems for {Maxwell's} equations in the quasi-stationary magnetic approximation and stable sequential {Lagrange} principles for their solving},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {187--209},
year = {2017},
volume = {57},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/}
}
TY - JOUR AU - A. V. Kalinin AU - M. I. Sumin AU - A. A. Tyukhtina TI - Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 187 EP - 209 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/ LA - ru ID - ZVMMF_2017_57_2_a0 ER -
%0 Journal Article %A A. V. Kalinin %A M. I. Sumin %A A. A. Tyukhtina %T Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 187-209 %V 57 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/ %G ru %F ZVMMF_2017_57_2_a0
A. V. Kalinin; M. I. Sumin; A. A. Tyukhtina. Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 187-209. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/
[1] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Fizmatlit, M., 1982
[2] Kulon Zh.-L., Sabonnader Zh.-K., SAPR v elektrotekhnike, Mir, M., 1988
[3] Alonso Rodriguez A., Valli A., Eddy current approximation of Maxwell equations. Theory, algorithms and applications, Springer-Verlag Italia, Milan, 2010 | MR | Zbl
[4] Galanin M. P., Popov Yu. P., Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh, Fizmatlit, M., 1995
[5] Dmitriev V. I., Ilinskii A. S., Sveshnikov A. G., “Razvitie matematicheskikh metodov issledovaniya pryamykh i obratnykh zadach elektrodinamiki”, Uspekhi matem. nauk, 31:6 (1976), 123–141 | Zbl
[6] Romanov V. G., Kabanikhin S. I., Pukhnacheva T. P., Obratnye zadachi elektrodinamiki, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1984
[7] Romanov V. G., Kabanikhin S. I., Obratnye zadachi geoelektriki, Nauka, M., 1991
[8] Ola P., Paivarinta L., Somersalo E., “An inverse boundary value problem in electrodynamics”, Duke Math. J., 70 (1993), 617–653 | DOI | MR | Zbl
[9] Li S., Yamamoto M., “An inverse problem for Maxwell's equations in anisotropic media”, Chin. Ann. Math., 28B:1 (2007), 35–54 | MR | Zbl
[10] Alonso Rodriguez A., Camano J., Valli A., “Inverse source problems for eddy current equations”, Inverse problems, 28 (2012) | MR
[11] Shestopalov Y., Smirnov Y., “Existence and uniqueness of a solution to the inverse problem of the complex permittivity reconstruction of a dielectric body in a waveguide”, Inverse problems, 26:10 (2010), 1–14 | DOI | MR
[12] Alekseev G. V., Brizitskii R. V., “Teoreticheskii analiz ekstremalnykh zadach granichnogo upravleniya dlya uravnenii Maksvella”, Sib. zh. industr. matem., 14:1 (2011), 3–16
[13] Fernandes P., “General approach to prove the existence and uniqueness of the solution in vector potential formulations of 3-D eddy current problems”, IEE Proc.-Sci. Meas. Technol., 142 (1995), 299–306 | DOI
[14] Biro O., Valli A., “The Coulimb gauged vector potential formulation for the eddy-current problem in general geometry: well-posedness and numerical approximation”, Comput. Meth. Appl. Mech. Engrg., 196 (2007), 890–904 | DOI | MR
[15] Fernandes P., Valli A., “Lorenz-gauged vector potential formulations for the time-harmonic eddy-current problem with $L_\infty$-regularity of material properties”, Math. Meth. Appl. Sci., 31 (2008), 71–98 | DOI | MR | Zbl
[16] Kang T., Kim K. I., “Fully discrete potential-based finite element methods for a transient eddy current problem”, Computing, 85 (2009), 339–362 | DOI | MR | Zbl
[17] Camano J., Rodriguez R., “Analysis of a FEM-BEM model posed on the conducting domain for the time-dependent eddy current problem”, J. Comp. Appl. Math., 236 (2012), 3084–3100 | DOI | MR | Zbl
[18] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981
[19] Girault V., Raviart P., Finite element methods for Navier–Stokes equations, Springer-Verlag, N.Y., 1986 | MR | Zbl
[20] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker Inc., N.Y., 2000 | MR | Zbl
[21] Prilepko A., Piskarev S., Shaw S.-Y., “On approximation of inverse problem for abstract parabolic differential equations in Banach spaces”, J. Inverse and Ill-Posed Problems, 15:8 (2007), 831–851 | DOI | MR | Zbl
[22] Isakov V., Inverse problems for partial differential equations, Springer, N.Y., 2006 | MR | Zbl
[23] Agoshkov V. I., Botvinovskii E. A., “Chislennoe reshenie nestatsionarnoi sistemy Stoksa metodami teorii sopryazhennykh uravnenii i optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 1192–1207
[24] Alekseev G. V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi mir, M., 2010
[25] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | Zbl
[26] Kalinin A. V., Kalinkina A. A., “Kvazistatsionarnye nachalno-kraevye zadachi dlya sistemy uravnenii Maksvella”, Vest. NNGU. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 1, 21–38
[27] Ivanov M. I., Kremer I. A., Urev M. V., “Reshenie metodom regulyarizatsii kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 564–576 | Zbl
[28] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychislit. matem. i matem. fiz., 51:9 (2011), 1594–1615 | Zbl
[29] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Appl. Math., 3:10A, Special issue “Optimization” (2012), 1334–1350 | DOI
[30] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychislit. matem. i matem. fiz., 54:1 (2014), 25–49 | DOI
[31] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011
[32] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986
[33] Sumin M. I., “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | Zbl
[34] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Uchebnoe posobie, Izd-vo NNGU, Nizhnii Novgorod, 2009
[35] Errou K. Dzh., Gurvits L., Udzava Kh., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, IL, M., 1962
[36] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979
[37] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[38] Weber C., “A local compactness theorem for Maxwell's equations”, Math. Meth. Appl. Sci., 2 (1980), 12–25 | DOI | MR | Zbl
[39] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zh. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41
[40] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977
[41] Kalinin A. V., Tyukhtina A. A., “O edinstvennosti resheniya retrospektivnoi obratnoi zadachi dlya sistemy uravnenii Maksvella v kvazistatsionarnom magnitnom priblizhenii”, Vest. NNGU im. N.I. Lobachevskogo, 2014, no. 4, 263–270
[42] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nevskii dialekt, S.-Pb., 2004
[43] Loewen P. D., Optimal control via nonsmooth analysis, CRM proc. and lecture notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[44] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989