Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 187-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial-boundary value problem for Maxwell's equations in the quasi-stationary magnetic approximation is investigated. Special gauge conditions are presented that make it possible to state the problem of independently determining the vector magnetic potential. The well-posedness of the problem is proved under general conditions on the coefficients. For quasi-stationary Maxwell equations, final observation problems formulated in terms of the vector magnetic potential are considered. They are treated as convex programming problems in a Hilbert space with an operator equality constraint. Stable sequential Lagrange principles are stated in the form of theorems on the existence of a minimizing approximate solution of the optimization problems under consideration. The possibility of applying algorithms of dual regularization and iterative dual regularization with a stopping rule is justified in the case of a finite observation error.
@article{ZVMMF_2017_57_2_a0,
     author = {A. V. Kalinin and M. I. Sumin and A. A. Tyukhtina},
     title = {Inverse final observation problems for {Maxwell's} equations in the quasi-stationary magnetic approximation and stable sequential {Lagrange} principles for their solving},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {187--209},
     year = {2017},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/}
}
TY  - JOUR
AU  - A. V. Kalinin
AU  - M. I. Sumin
AU  - A. A. Tyukhtina
TI  - Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 187
EP  - 209
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/
LA  - ru
ID  - ZVMMF_2017_57_2_a0
ER  - 
%0 Journal Article
%A A. V. Kalinin
%A M. I. Sumin
%A A. A. Tyukhtina
%T Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 187-209
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/
%G ru
%F ZVMMF_2017_57_2_a0
A. V. Kalinin; M. I. Sumin; A. A. Tyukhtina. Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 187-209. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/

[1] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Fizmatlit, M., 1982

[2] Kulon Zh.-L., Sabonnader Zh.-K., SAPR v elektrotekhnike, Mir, M., 1988

[3] Alonso Rodriguez A., Valli A., Eddy current approximation of Maxwell equations. Theory, algorithms and applications, Springer-Verlag Italia, Milan, 2010 | MR | Zbl

[4] Galanin M. P., Popov Yu. P., Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh, Fizmatlit, M., 1995

[5] Dmitriev V. I., Ilinskii A. S., Sveshnikov A. G., “Razvitie matematicheskikh metodov issledovaniya pryamykh i obratnykh zadach elektrodinamiki”, Uspekhi matem. nauk, 31:6 (1976), 123–141 | Zbl

[6] Romanov V. G., Kabanikhin S. I., Pukhnacheva T. P., Obratnye zadachi elektrodinamiki, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1984

[7] Romanov V. G., Kabanikhin S. I., Obratnye zadachi geoelektriki, Nauka, M., 1991

[8] Ola P., Paivarinta L., Somersalo E., “An inverse boundary value problem in electrodynamics”, Duke Math. J., 70 (1993), 617–653 | DOI | MR | Zbl

[9] Li S., Yamamoto M., “An inverse problem for Maxwell's equations in anisotropic media”, Chin. Ann. Math., 28B:1 (2007), 35–54 | MR | Zbl

[10] Alonso Rodriguez A., Camano J., Valli A., “Inverse source problems for eddy current equations”, Inverse problems, 28 (2012) | MR

[11] Shestopalov Y., Smirnov Y., “Existence and uniqueness of a solution to the inverse problem of the complex permittivity reconstruction of a dielectric body in a waveguide”, Inverse problems, 26:10 (2010), 1–14 | DOI | MR

[12] Alekseev G. V., Brizitskii R. V., “Teoreticheskii analiz ekstremalnykh zadach granichnogo upravleniya dlya uravnenii Maksvella”, Sib. zh. industr. matem., 14:1 (2011), 3–16

[13] Fernandes P., “General approach to prove the existence and uniqueness of the solution in vector potential formulations of 3-D eddy current problems”, IEE Proc.-Sci. Meas. Technol., 142 (1995), 299–306 | DOI

[14] Biro O., Valli A., “The Coulimb gauged vector potential formulation for the eddy-current problem in general geometry: well-posedness and numerical approximation”, Comput. Meth. Appl. Mech. Engrg., 196 (2007), 890–904 | DOI | MR

[15] Fernandes P., Valli A., “Lorenz-gauged vector potential formulations for the time-harmonic eddy-current problem with $L_\infty$-regularity of material properties”, Math. Meth. Appl. Sci., 31 (2008), 71–98 | DOI | MR | Zbl

[16] Kang T., Kim K. I., “Fully discrete potential-based finite element methods for a transient eddy current problem”, Computing, 85 (2009), 339–362 | DOI | MR | Zbl

[17] Camano J., Rodriguez R., “Analysis of a FEM-BEM model posed on the conducting domain for the time-dependent eddy current problem”, J. Comp. Appl. Math., 236 (2012), 3084–3100 | DOI | MR | Zbl

[18] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981

[19] Girault V., Raviart P., Finite element methods for Navier–Stokes equations, Springer-Verlag, N.Y., 1986 | MR | Zbl

[20] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker Inc., N.Y., 2000 | MR | Zbl

[21] Prilepko A., Piskarev S., Shaw S.-Y., “On approximation of inverse problem for abstract parabolic differential equations in Banach spaces”, J. Inverse and Ill-Posed Problems, 15:8 (2007), 831–851 | DOI | MR | Zbl

[22] Isakov V., Inverse problems for partial differential equations, Springer, N.Y., 2006 | MR | Zbl

[23] Agoshkov V. I., Botvinovskii E. A., “Chislennoe reshenie nestatsionarnoi sistemy Stoksa metodami teorii sopryazhennykh uravnenii i optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 1192–1207

[24] Alekseev G. V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi mir, M., 2010

[25] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | Zbl

[26] Kalinin A. V., Kalinkina A. A., “Kvazistatsionarnye nachalno-kraevye zadachi dlya sistemy uravnenii Maksvella”, Vest. NNGU. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 1, 21–38

[27] Ivanov M. I., Kremer I. A., Urev M. V., “Reshenie metodom regulyarizatsii kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 564–576 | Zbl

[28] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychislit. matem. i matem. fiz., 51:9 (2011), 1594–1615 | Zbl

[29] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Appl. Math., 3:10A, Special issue “Optimization” (2012), 1334–1350 | DOI

[30] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychislit. matem. i matem. fiz., 54:1 (2014), 25–49 | DOI

[31] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011

[32] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986

[33] Sumin M. I., “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | Zbl

[34] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Uchebnoe posobie, Izd-vo NNGU, Nizhnii Novgorod, 2009

[35] Errou K. Dzh., Gurvits L., Udzava Kh., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, IL, M., 1962

[36] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979

[37] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[38] Weber C., “A local compactness theorem for Maxwell's equations”, Math. Meth. Appl. Sci., 2 (1980), 12–25 | DOI | MR | Zbl

[39] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zh. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41

[40] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977

[41] Kalinin A. V., Tyukhtina A. A., “O edinstvennosti resheniya retrospektivnoi obratnoi zadachi dlya sistemy uravnenii Maksvella v kvazistatsionarnom magnitnom priblizhenii”, Vest. NNGU im. N.I. Lobachevskogo, 2014, no. 4, 263–270

[42] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nevskii dialekt, S.-Pb., 2004

[43] Loewen P. D., Optimal control via nonsmooth analysis, CRM proc. and lecture notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[44] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989