Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 187-209

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial-boundary value problem for Maxwell's equations in the quasi-stationary magnetic approximation is investigated. Special gauge conditions are presented that make it possible to state the problem of independently determining the vector magnetic potential. The well-posedness of the problem is proved under general conditions on the coefficients. For quasi-stationary Maxwell equations, final observation problems formulated in terms of the vector magnetic potential are considered. They are treated as convex programming problems in a Hilbert space with an operator equality constraint. Stable sequential Lagrange principles are stated in the form of theorems on the existence of a minimizing approximate solution of the optimization problems under consideration. The possibility of applying algorithms of dual regularization and iterative dual regularization with a stopping rule is justified in the case of a finite observation error.
@article{ZVMMF_2017_57_2_a0,
     author = {A. V. Kalinin and M. I. Sumin and A. A. Tyukhtina},
     title = {Inverse final observation problems for {Maxwell's} equations in the quasi-stationary magnetic approximation and stable sequential {Lagrange} principles for their solving},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {187--209},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/}
}
TY  - JOUR
AU  - A. V. Kalinin
AU  - M. I. Sumin
AU  - A. A. Tyukhtina
TI  - Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 187
EP  - 209
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/
LA  - ru
ID  - ZVMMF_2017_57_2_a0
ER  - 
%0 Journal Article
%A A. V. Kalinin
%A M. I. Sumin
%A A. A. Tyukhtina
%T Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 187-209
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/
%G ru
%F ZVMMF_2017_57_2_a0
A. V. Kalinin; M. I. Sumin; A. A. Tyukhtina. Inverse final observation problems for Maxwell's equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 2, pp. 187-209. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_2_a0/