Numerical diagnostics of solution blowup in differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 111-121
Voir la notice de l'article provenant de la source Math-Net.Ru
New simple and robust methods have been proposed for detecting poles, logarithmic poles, and mixed-type singularities in systems of ordinary differential equations. The methods produce characteristics of these singularities with a posteriori asymptotically precise error estimates. This approach is applicable to an arbitrary parametrization of integral curves, including the arc length parametrization, which is optimal for stiff and ill-conditioned problems. The method can be used to detect solution blowup for a broad class of important nonlinear partial differential equations, since they can be reduced to huge-order systems of ordinary differential equations by applying the method of lines. The method is superior in robustness and simplicity to previously known methods.
@article{ZVMMF_2017_57_1_a9,
author = {A. A. Belov},
title = {Numerical diagnostics of solution blowup in differential equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {111--121},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a9/}
}
TY - JOUR AU - A. A. Belov TI - Numerical diagnostics of solution blowup in differential equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 111 EP - 121 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a9/ LA - ru ID - ZVMMF_2017_57_1_a9 ER -
A. A. Belov. Numerical diagnostics of solution blowup in differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 111-121. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a9/