Two-frequency self-oscillations in a FitzHugh–Nagumo neural network
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 94-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new mathematical model of a one-dimensional array of FitzHugh–Nagumo neurons with resistive-inductive coupling between neighboring elements is proposed. The model relies on a chain of diffusively coupled three-dimensional systems of ordinary differential equations. It is shown that any finite number of coexisting stable invariant two-dimensional tori can be obtained in this chain by suitably increasing the number of its elements.
@article{ZVMMF_2017_57_1_a8,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Two-frequency self-oscillations in a {FitzHugh{\textendash}Nagumo} neural network},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {94--110},
     year = {2017},
     volume = {57},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a8/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Two-frequency self-oscillations in a FitzHugh–Nagumo neural network
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 94
EP  - 110
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a8/
LA  - ru
ID  - ZVMMF_2017_57_1_a8
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Two-frequency self-oscillations in a FitzHugh–Nagumo neural network
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 94-110
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a8/
%G ru
%F ZVMMF_2017_57_1_a8
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Two-frequency self-oscillations in a FitzHugh–Nagumo neural network. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 94-110. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a8/

[1] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117 (1952), 500–544 | DOI

[2] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI

[3] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50 (1962), 2061–2070 | DOI

[4] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974

[5] Kolesov A. Yu., Rozov N. Kh., “Dinamicheskie effekty, svyazannye s diskretizatsiei po prostranstvu nelineinykh, volnovykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1812–1826 | Zbl

[6] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991 | MR

[7] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004