A model of the direct interaction of elements of a tightly coupled system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 81-93
Voir la notice de l'article provenant de la source Math-Net.Ru
A maximin mathematical model describing the process of changing the quality indicators of products manufactured by facilities of a complex production system interconnected by multiple feedbacks is considered. Necessary and sufficient conditions for the monotone growth of these indicators are found. For the proposed new technologies utilized on some of these facilities, consistency conditions with the technologies used on other facilities are determined. For finding the optimal control of this process, it is recommended to use parallel computations.
@article{ZVMMF_2017_57_1_a7,
author = {I. F. Shakhnov},
title = {A model of the direct interaction of elements of a tightly coupled system},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {81--93},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a7/}
}
TY - JOUR AU - I. F. Shakhnov TI - A model of the direct interaction of elements of a tightly coupled system JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 81 EP - 93 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a7/ LA - ru ID - ZVMMF_2017_57_1_a7 ER -
I. F. Shakhnov. A model of the direct interaction of elements of a tightly coupled system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a7/