A model of the direct interaction of elements of a tightly coupled system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 81-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A maximin mathematical model describing the process of changing the quality indicators of products manufactured by facilities of a complex production system interconnected by multiple feedbacks is considered. Necessary and sufficient conditions for the monotone growth of these indicators are found. For the proposed new technologies utilized on some of these facilities, consistency conditions with the technologies used on other facilities are determined. For finding the optimal control of this process, it is recommended to use parallel computations.
@article{ZVMMF_2017_57_1_a7,
     author = {I. F. Shakhnov},
     title = {A model of the direct interaction of elements of a tightly coupled system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {81--93},
     year = {2017},
     volume = {57},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a7/}
}
TY  - JOUR
AU  - I. F. Shakhnov
TI  - A model of the direct interaction of elements of a tightly coupled system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 81
EP  - 93
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a7/
LA  - ru
ID  - ZVMMF_2017_57_1_a7
ER  - 
%0 Journal Article
%A I. F. Shakhnov
%T A model of the direct interaction of elements of a tightly coupled system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 81-93
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a7/
%G ru
%F ZVMMF_2017_57_1_a7
I. F. Shakhnov. A model of the direct interaction of elements of a tightly coupled system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a7/

[1] Pospelov G. S., Ven V. L., Solodov V. M. i dr., Problemy programmno-tselevogo planirovaniya i upravleniya, Nauka, M., 1981

[2] Saati T., Prinyatie reshenii. Metod analiza ierarkhii, Radio i svyaz, M., 1993

[3] Saati T., Kerns K., Analiticheskoe planirovanie, Radio i svyaz, M., 1991

[4] Yanch E., Prognozirovanie nauchno-tekhnicheskogo progressa, Progress, M., 1970

[5] Lopukhin M. M., Pattern-metod planirovaniya i prognozirovaniya nauchnykh rabot, Sov. radio, M., 1971

[6] Glushkov V. M., Vvedenie v ASU, Tekhnika, Kiev, 1974

[7] Roberts F. S., Diskretnye matematicheskie modeli s prilozheniem k sotsialnym, biologicheskim i ekologicheskim zadacham, Nauka, M., 1986 | MR

[8] Saati T. L., Prinyatie reshenii pri zavisimostyakh i obratnykh svyazyakh, Izd-vo LKI, M., 2008

[9] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[10] Shakhnov I. F., “Nekotorye voprosy soglasovaniya kharakteristik elementov v silnosvyaznykh sistemakh”, Issledovanie operatsii (modeli, sistemy, resheniya), VTs RAN, M., 2000, 50–66

[11] Shakhnov I. F., “Metod tsentralnogo lucha v zadache kvantifikatsii intensivnosti predpochtenii na osnove parnykh sravnenii”, Izv. RAN. TiSU, 2009, no. 4, 96–108

[12] Podinovskii V. V., “Zadacha otsenivaniya koeffitsientov vazhnosti kak simmetricheski-leksikograficheskaya zadacha optimizatsii”, Avtomat. i telemekhan., 2003, no. 3, 150–162