Measurement of returns to scale in radial DEA models
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 69-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general approach is proposed in order to measure returns to scale and scale elasticity at projections points in the radial data envelopment analysis (DEA) models. In the first stage, a relative interior point belonging to the optimal face is found using a special, elaborated method. In previous work it was proved that any relative interior point of a face has the same returns to scale as any other interior point of this face. In the second stage, we propose to determine the returns to scale at the relative interior point found in the first stage.
@article{ZVMMF_2017_57_1_a6,
     author = {V. E. Krivonozhko and A. V. Lychev and F. R. F{\o}rsund},
     title = {Measurement of returns to scale in radial {DEA} models},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {69--80},
     year = {2017},
     volume = {57},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a6/}
}
TY  - JOUR
AU  - V. E. Krivonozhko
AU  - A. V. Lychev
AU  - F. R. Førsund
TI  - Measurement of returns to scale in radial DEA models
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 69
EP  - 80
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a6/
LA  - ru
ID  - ZVMMF_2017_57_1_a6
ER  - 
%0 Journal Article
%A V. E. Krivonozhko
%A A. V. Lychev
%A F. R. Førsund
%T Measurement of returns to scale in radial DEA models
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 69-80
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a6/
%G ru
%F ZVMMF_2017_57_1_a6
V. E. Krivonozhko; A. V. Lychev; F. R. Førsund. Measurement of returns to scale in radial DEA models. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 69-80. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a6/

[1] Banker R. D., Thrall R. M., “Estimation of returns to scale using Data Envelopment Analysis”, European J. Operat. Research, 62:1 (1992), 74–84 | DOI | MR | Zbl

[2] Banker R. D., Charnes A., Cooper W. W., “Some models for estimating technical and scale inefficiency in data envelopment analysis”, Management Sci., 30:9 (1984), 1078–1092 | DOI | Zbl

[3] Banker R. D., Cooper W. W., Seiford L. M., Thrall R. M., Zhu J., “Returns to scale in different DEA models”, European J. Operat. Research, 154:2 (2004), 345–362 | DOI | MR | Zbl

[4] Forsund F. R., Hjalmarsson L., “Calculating scale elasticities in DEA models”, J. Operat. Research Society, 55:10 (2004), 1023–1038 | DOI | Zbl

[5] Cooper W. W., Seiford L. M., Tone K., Data envelopment analysis: A comprehensive text with models, applications, references and DEA-Solver Software, 2nd edition, Springer Science Business Media, New York, 2007 | Zbl

[6] Banker R. D., Cooper W. W., Seiford L. M., Zhu J., “Returns to scale in data envelopment analysis”, Handbook on Data Envelopment Analysis, Chapter 2, 2nd edition, eds. Cooper W. W., Seiford L. M., Zhu J., Springer, New York, 2011, 41–70 | DOI

[7] Krivonozhko V. E., Utkin O. B., Volodin A. V., Sablin I. A., Patrin M., “Constructions of economic functions and calculations of marginal rates in DEA using parametric optimization methods”, J. Operat. Research Society, 55:10 (2004), 1049–1058 | DOI | Zbl

[8] Førsund F. R., Hjalmarsson L., Krivonozhko V. E., Utkin O. B., “Calculation of scale elasticities in DEA models: direct and indirect approaches”, J. Productivity Analysis, 28:1 (2007), 45–56

[9] Førsund F. R., Kittelsen S. A. C., Krivonozhko V. E., “Farrell revisited — visualizing properties of DEA production frontiers”, J. Operational Research Society, 60:11 (2009), 1535–1545 | DOI

[10] Podinovski V. V., Førsund F. R., Krivonozhko V. E., “A simple derivation of scale elasticity in data envelopment analysis”, European J. Operat. Research, 197:1 (2009), 149–153 | DOI | MR | Zbl

[11] Podinovski V. V., Førsund F. R., “Differential characteristics of efficient frontiers in Data Envelopment Analysis”, Operat. Research, 58:6 (2010), 1743–1754 | DOI | MR | Zbl

[12] Atici K. B., Podinovski V. V., “Mixed partial elasticities in constant returns-to-scale production technologies”, European J. Operat. Research, 220:1 (2012), 262–269 | DOI | MR | Zbl

[13] Sueyoshi T., Sekitani K., “Measurement of returns to scale using a non-radial DEA model: A range-adjusted measure approach”, European J. Operat. Research, 176 (2007), 1918–1946 | DOI | Zbl

[14] Sueyoshi T., Sekitani K., “The measurement of returns to scale under a simultaneous occurrence of multiple solutions in a reference set and a supporting hyperplane”, European J. Operat. Research, 181:2 (2007), 549–570 | DOI | MR | Zbl

[15] Sueyoshi T., Sekitani K., “An occurrence of multiple projections in DEA-based measurement of technical efficiency: theoretical comparison among DEA models from desirable properties”, European J. Operat. Research, 196:2 (2009), 764–794 | DOI | MR | Zbl

[16] Krivonozhko V. E., Førsund F. R., Lychev A. V., “A note on imposing strong complementary slackness conditions in DEA”, European J. Operat. Research, 220:3 (2012), 716–721 | DOI | MR | Zbl

[17] Krivonozhko V. E., Førsund F. R., Lychev A. V., “Returns-to-scale properties in DEA models: the fundamental role of interior points”, J. Productivity Analysis, 38:2 (2012), 121–130 | DOI

[18] Krivonozhko V. E., Førsund F. R., Lychev A. V., “Measurement of returns to scale using non-radial DEA models”, European J. Operat. Research, 232:3 (2014), 664–670 | DOI | MR | Zbl

[19] Podinovski V. V., Chambers R. G., Atici K. B., Deineko I. D., “Marginal values and returns to scale for nonparametric production frontiers”, Operat. Research, 64:1 (2016), 236–250 | DOI | MR | Zbl

[20] Dantzig G. B., Thapa M. N., Linear programming 2: Theory and Extensions, Springer-Verlag, New York, 2003 | MR

[21] Volodin A. V., Krivonozhko V. E., Sablin I. A., Utkin O. B., “Issledovanie granichnykh tochek i postroenie parametricheskikh optimizatsionnykh metodov v analize effektivnosti slozhnykh sistem”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 627–640 | Zbl

[22] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi granitsy Pareto”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023

[23] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, MAKS Press, M., 2008