@article{ZVMMF_2017_57_1_a5,
author = {F. A. Kuterin and M. I. Sumin},
title = {Stable iterative {Lagrange} principle in convex programming as a tool for solving unstable problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {55--68},
year = {2017},
volume = {57},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a5/}
}
TY - JOUR AU - F. A. Kuterin AU - M. I. Sumin TI - Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 55 EP - 68 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a5/ LA - ru ID - ZVMMF_2017_57_1_a5 ER -
%0 Journal Article %A F. A. Kuterin %A M. I. Sumin %T Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 55-68 %V 57 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a5/ %G ru %F ZVMMF_2017_57_1_a5
F. A. Kuterin; M. I. Sumin. Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 55-68. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a5/
[1] Vasilev F. P., Metody optimizatsii, v 2-kh kn., MTsNMO, M., 2011
[2] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | Zbl
[3] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Uchebnoe posobie, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2009
[4] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna-Takkera v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | Zbl
[5] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Appl. Math., 3:10A, special iss. “Optimization” (2012), 1334–1350 | DOI
[6] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychisl. matem. i matem. fiz., 54:1 (2014), 25–49 | DOI
[7] Errou K. Dzh., Gurvits L., Udzava Kh., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, IL, M., 1962
[8] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990
[9] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977
[10] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: svoistva normalnosti, subgradientnyi dvoistvennyi metod”, Zh. vychisl. matem. i matem. fiz., 37:2 (1997), 162–178 | Zbl
[11] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zh. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41
[12] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[13] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979
[14] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988
[15] Bakushinskii A. B., “Metody resheniya monotonnykh variatsionnykh neravenstv, osnovannye na printsipe iterativnoi regulyarizatsii”, Zh. vychisl. matem. i matem. fiz., 17:6 (1977), 1350–1362 | Zbl
[16] Bakushinskii A. B., Goncharskii A. V., Iteratsionnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR
[17] Sumin M. I., “Iterativnaya regulyarizatsiya gradientnogo dvoistvennogo metoda dlya resheniya uravneniya Fredgolma pervogo roda”, Vestnik Nizhegorodskogo universiteta. Ser. Matematika, 2004, no. 2, 193–209
[18] Krasnov M. L., Kiselev A. I., Makarenko G. I., Integralnye uravneniya, Nauka, M., 1976