Weighted cubic and biharmonic splines
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
            
            
            
          
        
      @article{ZVMMF_2017_57_1_a2,
     author = {B. Kvasov and Tae-Wan Kim},
     title = {Weighted cubic and biharmonic splines},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {29},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a2/}
}
                      
                      
                    B. Kvasov; Tae-Wan Kim. Weighted cubic and biharmonic splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a2/
