On the convergence of difference schemes for fractional differential equations with Robin boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 122-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Locally one-dimensional difference schemes for partial differential equations with fractional order derivatives with respect to time and space in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.
@article{ZVMMF_2017_57_1_a10,
     author = {A. K. Bazzaev and M. Kh. Shhanukov-Lafishev},
     title = {On the convergence of difference schemes for fractional differential equations with {Robin} boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {122--132},
     year = {2017},
     volume = {57},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a10/}
}
TY  - JOUR
AU  - A. K. Bazzaev
AU  - M. Kh. Shhanukov-Lafishev
TI  - On the convergence of difference schemes for fractional differential equations with Robin boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 122
EP  - 132
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a10/
LA  - ru
ID  - ZVMMF_2017_57_1_a10
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%A M. Kh. Shhanukov-Lafishev
%T On the convergence of difference schemes for fractional differential equations with Robin boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 122-132
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a10/
%G ru
%F ZVMMF_2017_57_1_a10
A. K. Bazzaev; M. Kh. Shhanukov-Lafishev. On the convergence of difference schemes for fractional differential equations with Robin boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 122-132. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a10/

[1] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, Zh. eksperim. i teor. fiz., 108:5(11) (1995), 1875–1884

[2] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Avtovolnovye protsessy pri nelineinoi fraktalnoi diffuzii”, Dokl. RAN, 369:3 (1999), 332–333 | Zbl

[3] Kobelev V. L., Kobelev Ya. L., Romanov E. P., “Nedebaevskaya relaksatsiya i diffuziya vo fraktalnom prostranstve”, Dokl. RAN, 361:6 (1998), 755–758 | Zbl

[4] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurkov Yu. P., “Pryamye zadachi klassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130

[5] Goloviznin V. M., Korotkin I. A., “Metody chislennykh reshenii nekotorykh odnomernykh uravnenii s drobnymi proizvodnymi”, Differents. ur-niya, 42:7 (2006), 907–913 | Zbl

[6] Nigmatulin R. R., “Osobennosti relaksatsii sistemy s ostatochnoi pamyatyu”, Fiz. tverdogo tela, 27:5 (1985), 1583–1585

[7] Shogenov V. Kh., Akhkubekov A. A., Akhkubekov R. A., “Metod drobnogo differentsirovaniya v teorii brounovskogo dvizheniya”, Izv. vuzov. Sev.-Kav. Region., 2004, no. 1, 46–49

[8] Uchaikin V. V., “K teorii anomalnoi diffuzii chastits s konechnoi skorostyu svobodnogo dvizheniya”, Teor. i matem. fiz., 115:1 (1998), 154–160 | DOI | Zbl

[9] Zaburdaev V. Yu., Chukbar K. V., “Uskorennaya superdiffuziya i konechnaya skorost poletov Levi”, Zh. eksperim. i teor. fiziki, 121:2 (2002), 299–307

[10] Klafter J., Shlesinger M. F., Zumofen G., “Beyond Brownian Motion”, Phys. Today, 49:2 (1996), 33–39 | DOI

[11] Mainardi F., Luchko Y., Pagnini G., “The fundamental solution of the space-time fractional diffusion equation”, Fractional Calculus and Applied Analys., 4:2 (2002), 153–192 | MR

[12] Scalas E., Gorenflo R., Mainardi F., “Uncoupled continuous-time random walks: solution and limiting behaviour of the master equation”, Phys. Rev. E, 69 (2004), 011107/1-8 | DOI | MR

[13] Zhang Y., Benson D. A., Meerschaert M. M., Scheffler H. P., “On using random walks to solve the space fractional advection-dispersion equations”, J. Stat. Phys., 123:1 (2006), 89–110 | DOI | MR | Zbl

[14] Abrashina-Zhadaeva N. G., Timoshenko I. A., “Konechno-raznostnye skhemy dlya uravneniya s proizvodnymi drobnykh poryadkov v mnogomernoi oblasti”, Differents. ur-niya, 49:7 (2013), 819–825 | Zbl

[15] Jin B., Lazarov R., Zhou Z., “A Petrov–Galerkin finite element method for fractional convection-diffusion equations”, SIAM J. Nummer. Anal., 54:1 (2016), 481–503 | DOI | MR | Zbl

[16] Jin B., Lazarov R., Pasciak J., Zhou Z., “Error analysis of a finite element method for the space-fractional parabolic equation”, SIAM J. Nummer. Anal., 52:5 (2016), 2272–2294 | DOI | MR

[17] Jin B., Lazarov R., Zhou Z., “An analysis of the $L_1$ scheme for the subdiffusion equation with nonsmooth data”, IMA J. Numer. Anal., 33 (2015), 691–698 | MR

[18] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881

[19] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887 | Zbl

[20] Bazzaev A. K., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami III roda”, Zh. vychisl. matem. i matem. fiz., 50:7 (2010), 1200–1208 | Zbl

[21] Bazzaev A. K., Mambetova A. B., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya uravneniya teploprovodnosti drobnogo poryadka s sosredotochennoi teploemkostyu”, Zh. vychisl. matem. i matem. fiz., 52:9 (2012), 1656–1665 | Zbl

[22] Bazzaev A. K., “Raznostnye skhemy dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami tretego roda v mnogomernoi oblasti”, Ufimskii matem. zhurnal, 5:1 (2013), 11–16

[23] Bazzaev A. K., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernye skhemy dlya uravneniya diffuzii s drobnoi proizvodnoi po vremeni v oblasti proizvolnoi formy”, Zh. vychisl. matem. i matem. fiz., 56:1 (2016), 113–123 | DOI | Zbl

[24] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 219 (2012), 3938–3946 | MR | Zbl

[25] Diethelm K., Walz G., “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16 (1997), 231–253 | DOI | MR | Zbl

[26] Diethelm K., Ford N. J., “Analysis of fractional differential equations”, J. Math. Anal. Appl., 265 (2002), 229–248 | DOI | MR | Zbl

[27] Povstenko Yu., “Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under robin boundary condition”, Eur. Phys. J.-Spec. Top., 222:8 (2013), 1767–1777 | DOI

[28] Povstenko Yu., “Time-fractional heat conduction in an infinite medium with a spherical hole under robin boundary condition”, Fract. Calc. Appl. Anal., 16:2 (2013), 354–369 | DOI | MR | Zbl

[29] Tadjeran Ch., Meerschaert M., Scheffler H., “A second-order accurate numerical approximation for the fractional diffusion equation”, J. of Comput. Phys., 213 (2006), 205–213 | DOI | MR | Zbl

[30] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | MR

[31] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR

[32] Luchko Yu., “Maximum principle for the generalized time-fractional diffusion equation”, J. Math. Anal. Appl., 351 (2009), 218–223 | DOI | MR | Zbl

[33] Luchko Yu., “Boundary value problems for the generalized time-fractional diffusion equation of distributed order”, Fract. Calc. Appl. Anal., 12:4 (2009), 409–422 | MR | Zbl

[34] Luchko Yu., “Maximum principle and its application for the time-fractional diffusion equations”, Fract. Calc. Appl. Anal., 14:1 (2011), 409–422 | MR

[35] Luchko Yu., “Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation”, Comput. and Math. with Applicat., 59 (2010), 1766–1772 | DOI | MR | Zbl

[36] Juan J. N., “Maximum principles for fractional differential equations derived from Mittag–Leffler functions”, Appl. Math. Lett., 23 (2010), 1248–1251 | DOI | MR | Zbl

[37] Ye H., Liu F., Anh V., Turner I., “Maximum principle and numerical method for the multi-term time-space Riesz–Caputo fractional differential equations”, Appl. Math. Comput., 227 (2014), 531–540 | MR