@article{ZVMMF_2017_57_1_a1,
author = {I. A. Blatov and A. I. Zadorin and E. V. Kitaeva},
title = {Cubic spline interpolation of functions with high gradients in boundary layers},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {9--28},
year = {2017},
volume = {57},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a1/}
}
TY - JOUR AU - I. A. Blatov AU - A. I. Zadorin AU - E. V. Kitaeva TI - Cubic spline interpolation of functions with high gradients in boundary layers JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 9 EP - 28 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a1/ LA - ru ID - ZVMMF_2017_57_1_a1 ER -
%0 Journal Article %A I. A. Blatov %A A. I. Zadorin %A E. V. Kitaeva %T Cubic spline interpolation of functions with high gradients in boundary layers %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 9-28 %V 57 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a1/ %G ru %F ZVMMF_2017_57_1_a1
I. A. Blatov; A. I. Zadorin; E. V. Kitaeva. Cubic spline interpolation of functions with high gradients in boundary layers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 1, pp. 9-28. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_1_a1/
[1] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248 | Zbl
[2] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl
[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[4] Ahlberg J. H., Nilson E. N., Walsh J. L., The theory of splines and their applications, Academic Press, New York, 1967 | MR | Zbl
[5] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980
[6] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirsk. zh. vychisl. matem., 10:3 (2007), 267–275
[7] Zadorin A. I., Guryanova M. V., “Analogue of a cubic spline for a function with a boundary layer component”, Proc. Fifth Conference on Finite Difference Methods: Theory and Applications (2010), Rousse University, Rousse, 2011, 166–173
[8] Zadorin A. I., “Interpolyatsiya Lagranzha i formuly Nyutona–Kotesa dlya funktsii s pogransloinoi sostavlyayuschei na kusochno-ravnomernykh setkakh”, Sibirsk. zh. vychisl. matem., 18:3 (2015), 289–303
[9] Zmatrakov N. L., “Skhodimost interpolyatsionnogo protsessa dlya parabolicheskikh i kubicheskikh splainov”, Tr. MIAN, 138, 1975, 71–93 | Zbl
[10] Zmatrakov N. L., “Neobkhodimoe uslovie skhodimosti interpolyatsionnykh parabolicheskikh i kubicheskikh splainov”, Matem. zametki, 19:2 (1976), 165–178 | Zbl
[11] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, Revised Edition, World Scientific, Singapore, 2012 | MR | Zbl
[12] Linss T., “The necessity of Shishkin decompositions”, Applied Mathematics Letters, 14 (2001), 891–896 | DOI | MR | Zbl
[13] Bor K. De, Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985
[14] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl
[15] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984
[16] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978
[17] Blatov I. A., “O metodakh nepolnoi faktorizatsii dlya sistem s razrezhennymi matritsami”, Zh. vychisl. matem. i matem. fiz., 33:6 (1993), 819–836 | Zbl
[18] Volkov Yu. S., “O nakhozhdenii polnogo interpolyatsionnogo splaina cherez V-splainy”, Sibirsk. elektronnye matem. izvestiya, 5 (2008), 334–338 | Zbl
[19] Blatov I. A., Kitaeva E. V., “Skhodimost metoda adaptatsii setok N. S. Bakhvalova dlya singulyarno vozmuschennykh kraevykh zadach”, Sibirsk. zh. vychisl. matem., 19:1 (2016), 43–55 | Zbl