Generalized Boltzmann-type equations for aggregation in gases
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 2065-2078 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The coalescence and fragmentation of particles in a dispersion system are investigated by applying kinetic theory methods, namely, by generalizing the Boltzmann kinetic equation to coalescence and fragmentation processes. Dynamic equations for the particle concentrations in the system are derived using the kinetic equations of motion. For particle coalescence and fragmentation, equations for the particle momentum, coordinate, and mass distribution functions are obtained and the coalescence and fragmentation coefficients are calculated. The equilibrium mass and velocity distribution functions of the particles in the dispersion system are found in the approximation of an active terminal group (Becker–Döring-type equation). The transition to a continuum description is performed.
@article{ZVMMF_2017_57_12_a8,
     author = {S. Z. Adzhiev and V. V. Vedenyapin and Yu. A. Volkov and I. V. Melikhov},
     title = {Generalized {Boltzmann-type} equations for aggregation in gases},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2065--2078},
     year = {2017},
     volume = {57},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a8/}
}
TY  - JOUR
AU  - S. Z. Adzhiev
AU  - V. V. Vedenyapin
AU  - Yu. A. Volkov
AU  - I. V. Melikhov
TI  - Generalized Boltzmann-type equations for aggregation in gases
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 2065
EP  - 2078
VL  - 57
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a8/
LA  - ru
ID  - ZVMMF_2017_57_12_a8
ER  - 
%0 Journal Article
%A S. Z. Adzhiev
%A V. V. Vedenyapin
%A Yu. A. Volkov
%A I. V. Melikhov
%T Generalized Boltzmann-type equations for aggregation in gases
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 2065-2078
%V 57
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a8/
%G ru
%F ZVMMF_2017_57_12_a8
S. Z. Adzhiev; V. V. Vedenyapin; Yu. A. Volkov; I. V. Melikhov. Generalized Boltzmann-type equations for aggregation in gases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 2065-2078. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a8/

[1] Maksvell Dzh.K., “O dinamicheskoi teorii gazov”, Trudy po kineticheskoi teorii, Per. s angl., Binom. Laboratoriya znanii, M., 2011, 173–230

[2] Boltsman L., “Dalneishie issledovaniya teplovogo ravnovesiya mezhdu molekulami gaza”, Izbrannye trudy, Nauka, M., 1984, 125–189; Boltzmann L., “Weitere Studien uber das Wärmegleichgewicht unter Gasmolekulen”, Wien. Ber., 66 (1872), 275–370; Wissenschaftliche Abhandlungen, 1, Barth–Leipzig, 1909, 316–402

[3] Sonntag H., Coagulation kinetics. Coagulation and flocculation, ed. Dobias B., Marcel Dekker, New York, 1993, 57–99

[4] Voloschuk V. M., Kineticheskaya teoriya koagulyatsii, Gidrometeoizdat, L., 1984

[5] Smoluchowski M., “Versuch einer mathematischen theorie der koagulationskinetik kolloider losungen”, Z. Phys. Chem., 92 (1917), 129–168; Smolukhovskii M., Opyt matematicheskoi teorii kinetiki koagulyatsii kolloidnykh rastvorov, eds. A.I. Rabinovich, P.S. Vasilev, ONTI, 1936, 7–39

[6] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[7] Vedenyapin V. V., Adzhiev S. Z., “Entropiya po Boltsmanu i Puankare”, Uspekhi matem. nauk, 69:6(420) (2014), 45–80 | DOI

[8] Adzhiev S. Z., Vedenyapin V. V., “Vremennýe srednie i ekstremali Boltsmana dlya markovskikh tsepei, diskretnogo uravneniya Liuvillya i krugovoi modeli Katsa”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 2063–2074

[9] Vedenyapin V. V., Orlov Yu. N., “O zakonakh sokhraneniya dlya polinomialnykh gamiltonianov i dlya diskretnykh modelei uravneniya Boltsmana”, Teor. i matem. fiz., 121:2 (1999), 307–315 | DOI

[10] Vedenyapin V. V., “Velocity inductive construction for mixtures”, Transport Theory and Statistical Physics, 28:7 (1999), 727–742 | DOI

[11] Adzhiev S. Z., Vedenyapin V. V., “O razmerakh diskretnykh modelei uravneniya Boltsmana dlya smesei”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1045–1054

[12] Vedenyapin V. V., Amosov S. A., Toskano L., “Invarianty dlya gamiltonianov i kineticheskikh uravnenii”, Uspekhi matem. nauk, 54:5 (1999), 153–154 | DOI

[13] Adzhiev S. Z., Amosov S. A., Vedenyapin V. V., “Odnomernye diskretnye modeli kineticheskikh uravnenii dlya smesei”, Zh. vychisl. matem. i matem. fiz., 44:3 (2004), 553–558

[14] A. I. Vol'pert, S. I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics, Mech. Anal., 8, Martinus Nijhoff Publishers, Dordrecht, 1985, xviii+678 pp. | MR

[15] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971

[16] Emmanuel N. M., Knorre D. G., Kurs khimicheskoi kinetiki, Vyssh. shkola, M., 1984

[17] Smirnov B. M., “Klasternaya plazma”, Uspekhi fiz. nauk, 170:5 (2000), 495–534 | DOI

[18] Arrhenius S., “Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren”, Z. Physik. Chemie (Leipzig), 4 (1889), 226–248

[19] Shtiller V., Uravnenie Arreniusa i neravnovesnaya kinetika, Mir, M., 2000

[20] Melikhov I. V., Fiziko-khimicheskaya evolyutsiya tverdogo veschestva, Binom, M., 2006

[21] Batischeva Ya. G., Vedenyapin V. V., “II-i zakon termodinamiki dlya khimicheskoi kinetiki”, Matem. modelirovanie, 17:8 (2005), 106–110

[22] Malyshev V. A., Pirogov S. A., “Obratimost i neobratimost v stokhasticheskoi khimicheskoi kinetike”, Uspekhi matem. nauk, 63:1(379) (2008), 3–36 | DOI

[23] Becker R., Doring W., “Kinetische Behandlung der Keimbildung in ubersattingten Dampfer”, Ann. Phys., 24 (1935), 719–752 | DOI

[24] Penrose O., Lebowitz J. L., “Toward a rigorous molecular theory of detestability”, Fluctuation phenomena, Studies in Statistical mechanics, VII, eds. Montroll E., Lebowitz J. B., North-Holland, Amsterdam, 1976 | MR

[25] Carr J., da Costa F. P., “Asymptotic behaviour of solutions to the coagulation-fragmentation equation. II. Weak formulation”, J. Stat. Phys, 77:1/2 (1994), 89–123 | DOI | MR

[26] Carr J., “Asymptotic behaviour of solutions to the coagulation-fragmentation equation. I. The strong fragmentation case”, Proc. Royal Soc. Edin., 121A (1992), 231–244 | DOI | MR

[27] Melikhov I. V., Mikheev N. B., Kulyukhin S. A., Kozlovskaya E. D., “Morfologicheskaya pamyat dispersnykh tverdykh faz”, Kolloidnyi zh., 63:6 (2001), 808–815